On the structure of (−β)-integers
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2012)
- Volume: 46, Issue: 1, page 181-200
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topSteiner, Wolfgang. "On the structure of (−β)-integers." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 46.1 (2012): 181-200. <http://eudml.org/doc/273077>.
@article{Steiner2012,
abstract = {The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.},
author = {Steiner, Wolfgang},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {beta expansion; Parry number; beta-integer; morphism; substitution},
language = {eng},
number = {1},
pages = {181-200},
publisher = {EDP-Sciences},
title = {On the structure of (−β)-integers},
url = {http://eudml.org/doc/273077},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Steiner, Wolfgang
TI - On the structure of (−β)-integers
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 1
SP - 181
EP - 200
AB - The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.
LA - eng
KW - beta expansion; Parry number; beta-integer; morphism; substitution
UR - http://eudml.org/doc/273077
ER -
References
top- [1] P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT]. Zbl1271.11009MR3051451
- [2] L. Balková, J.-P. Gazeau and E. Pelantová, Asymptotic behavior of beta-integers. Lett. Math. Phys.84 (2008) 179–198. Zbl1185.11063MR2415548
- [3] L. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatsh. Math.155 (2008) 251–263. Zbl1185.68503MR2461579
- [4] J. Bernat, Z. Masáková and E. Pelantová, On a class of infinite words with affine factor complexity. Theoret. Comput. Sci.389 (2007) 12–25. Zbl1143.68062MR2363357
- [5] V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions. Integers 5 (2005) 46 (electronic only). Zbl1139.37008MR2191748
- [6] Č. Burdík, C. Frougny, J.P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A31 (1998) 6449–6472. Zbl0941.52019MR1644115
- [7] F. Durand, A characterization of substitutive sequences using return words. Discrete Math.179 (1998) 89–101. Zbl0895.68087MR1489074
- [8] F. Enomoto, AH-substitution and Markov partition of a group automorphism on Td. Tokyo J. Math.31 (2008) 375–398. Zbl1177.37012MR2477879
- [9] S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236. Zbl0872.11017MR1311222
- [10] C. Frougny and A.C. Lai, On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci. 5583 (2009) 252–263. Zbl1247.68139MR2544706
- [11] C. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004) 163–185; Corrigendum: RAIRO-Theor. Inf. Appl. 38 (2004) 269–271. Zbl1104.11013MR2076404
- [12] J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux16 (2004) 125–149. Zbl1075.11007MR2145576
- [13] P. Góra, Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst.27 (2007) 1583–1598. Zbl1123.37015
- [14] S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers9 (2009) 239–259. Zbl1191.11005MR2534912
- [15] C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear. Zbl1295.11010MR2888207
- [16] K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. Integers9 (2009) 281–310. Zbl1193.68201MR2534914
- [17] L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2. Zbl1266.37017MR2974214
- [18] Z. Masáková and E. Pelantová, Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech.51 (2011) 59–64.
- [19] W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung.11 (1960) 401–416. Zbl0099.28103MR142719
- [20] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957) 477–493. Zbl0079.08901MR97374
- [21] W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.