Geometric study of the beta-integers for a Perron number and mathematical quasicrystals
Jean-Pierre Gazeau[1]; Jean-Louis Verger-Gaugry[2]
- [1] LPTMC Université Paris 7 Denis Diderot mailbox 7020 2 place Jussieu 75251 Paris Cedex 05, France
- [2] Institut Fourier UJF Grenoble UFR de Mathématiques CNRS UMR 5582 BP 74 - Domaine Universitaire 38402 Saint Martin d’Hères, France
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 125-149
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGazeau, Jean-Pierre, and Verger-Gaugry, Jean-Louis. "Geometric study of the beta-integers for a Perron number and mathematical quasicrystals." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 125-149. <http://eudml.org/doc/249261>.
@article{Gazeau2004,
abstract = {We investigate in a geometrical way the point sets of $\mathop \{\mathbb\{R\}\}\nolimits $ obtained by the $\beta $-numeration that are the $\beta $-integers $\mathop \{\mathbb\{Z\}\}\nolimits _\{\beta \} \subset \mathop \{\mathbb\{Z\}\}\nolimits [\beta ]$ where $\beta $ is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the $\beta $-numeration, allowing to lift up the $\beta $-integers to some points of the lattice $\mathop \{\mathbb\{Z\}\}\nolimits ^\{m\}$ ($m = $ degree of $\beta $) lying about the dominant eigenspace of the companion matrix of $\beta $ . When $\beta $ is in particular a Pisot number, this framework gives another proof of the fact that $\mathop \{\mathbb\{Z\}\}\nolimits _\{\beta \}$ is a Meyer set. In the internal spaces, the canonical acceptance windows are fractals and one of them is the Rauzy fractal (up to quasi-dilation). We show it on an example. We show that $\mathop \{\mathbb\{Z\}\}\nolimits _\{\beta \} \cap \mathop \{\mathbb\{R\}\}\nolimits ^\{+\}$ is finitely generated over $\mathop \{\mathbb\{N\}\}\nolimits $ and make a link with the classification of Delone sets proposed by Lagarias. Finally we give an effective upper bound for the integer $q$ taking place in the relation: $x, y \in \mathop \{\mathbb\{Z\}\}\nolimits _\{\beta \} ~ \Rightarrow x+y ~(\mbox \{\{\rm respectively\}\} ~x-y~~) \in \beta ^\{-q\} \mathop \{\mathbb\{Z\}\}\nolimits _\{\beta \}$ if $x+y$ (respectively $x-y$ ) has a finite Rényi $\beta $-expansion.},
affiliation = {LPTMC Université Paris 7 Denis Diderot mailbox 7020 2 place Jussieu 75251 Paris Cedex 05, France; Institut Fourier UJF Grenoble UFR de Mathématiques CNRS UMR 5582 BP 74 - Domaine Universitaire 38402 Saint Martin d’Hères, France},
author = {Gazeau, Jean-Pierre, Verger-Gaugry, Jean-Louis},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {beta-integers; Perron numbers; Pisot numbers; quasi-crystals; Meyer sets; Delaunay sets; -expansions},
language = {eng},
number = {1},
pages = {125-149},
publisher = {Université Bordeaux 1},
title = {Geometric study of the beta-integers for a Perron number and mathematical quasicrystals},
url = {http://eudml.org/doc/249261},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Gazeau, Jean-Pierre
AU - Verger-Gaugry, Jean-Louis
TI - Geometric study of the beta-integers for a Perron number and mathematical quasicrystals
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 125
EP - 149
AB - We investigate in a geometrical way the point sets of $\mathop {\mathbb{R}}\nolimits $ obtained by the $\beta $-numeration that are the $\beta $-integers $\mathop {\mathbb{Z}}\nolimits _{\beta } \subset \mathop {\mathbb{Z}}\nolimits [\beta ]$ where $\beta $ is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the $\beta $-numeration, allowing to lift up the $\beta $-integers to some points of the lattice $\mathop {\mathbb{Z}}\nolimits ^{m}$ ($m = $ degree of $\beta $) lying about the dominant eigenspace of the companion matrix of $\beta $ . When $\beta $ is in particular a Pisot number, this framework gives another proof of the fact that $\mathop {\mathbb{Z}}\nolimits _{\beta }$ is a Meyer set. In the internal spaces, the canonical acceptance windows are fractals and one of them is the Rauzy fractal (up to quasi-dilation). We show it on an example. We show that $\mathop {\mathbb{Z}}\nolimits _{\beta } \cap \mathop {\mathbb{R}}\nolimits ^{+}$ is finitely generated over $\mathop {\mathbb{N}}\nolimits $ and make a link with the classification of Delone sets proposed by Lagarias. Finally we give an effective upper bound for the integer $q$ taking place in the relation: $x, y \in \mathop {\mathbb{Z}}\nolimits _{\beta } ~ \Rightarrow x+y ~(\mbox {{\rm respectively}} ~x-y~~) \in \beta ^{-q} \mathop {\mathbb{Z}}\nolimits _{\beta }$ if $x+y$ (respectively $x-y$ ) has a finite Rényi $\beta $-expansion.
LA - eng
KW - beta-integers; Perron numbers; Pisot numbers; quasi-crystals; Meyer sets; Delaunay sets; -expansions
UR - http://eudml.org/doc/249261
ER -
References
top- S. Akiyama, Cubic Pisot units with finite -expansions. Algebraic number theory and Diophantine analysis, (Graz, 1998), de Gruyter, Berlin, (2000), 11–26. Zbl1001.11038MR1770451
- S. Akiyama, Pisot numbers and greedy algorithm. Number Theory, (Eger, 1996), de Gruyter, Berlin, (1998), 9–21. Zbl0919.11063MR1628829
- P. Arnoux, V. Berthé, H. Ei and S. Ito, Tilings, quasicrystals, discrete planes, generalized substitutions and multidimensional continued fractions. Disc. Math. and Theor. Comp. Sci. Proc. AA (DM-CCG), (2001), 59–78. Zbl1017.68147MR1888763
- P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. 8 (2001), 181–207. Zbl1007.37001MR1838930
- A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sc. Paris, Série A, t. 285 (1977), 419–421. Zbl0362.10040MR447134
- A. Bertrand - Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Hung., 54, (3-4) (1989), 237–241. Zbl0695.10005MR1029085
- A. Bertrand - Mathis, Développement en base , Répartition modulo un de la suite . Langages codes et - shift, Bull. Soc. Math. France, 114 (1986), 271–323. Zbl0628.58024MR878240
- A. Bertrand - Mathis, Nombres de Perron et questions de rationnalité. Séminaire d’Analyse, Université de Clermont II, Année 1988/89, Exposé 08; A. Bertrand - Mathis, Nombres de Perron et problèmes de rationnalité. Astérisque, 198-199-200 (1991), 67–76. Zbl0766.11043
- A. Bertrand - Mathis, Questions diverses relatives aux systèmes codés: applications au -shift. Preprint.
- F. Blanchard, -expansions and Symbolic Dynamics. Theor. Comp. Sci. 65 (1989), 131–141. Zbl0682.68081MR1020481
- Č. Burdík, Ch. Frougny, J.-P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 6449–6472. Zbl0941.52019MR1644115
- C. Frougny, Number representation and finite automata. London Math. Soc. Lecture Note Ser. 279 (2000), 207–228. Zbl0976.11003MR1776760
- Ch. Frougny and B. Solomyak, Finite beta-expansions. Ergod. Theor. Dynam. Syst. 12 (1992), 713–723. Zbl0814.68065MR1200339
- J. P. Gazeau, Pisot-Cyclotomic Integers for Quasicrystals. The Mathematics of Long-Range Aperiodic Order, Ed. By R.V. Moody, Kluwer Academic Publishers, (1997), 175–198. Zbl0887.11043MR1460024
- M. W. Hirsch and S. Smale, Differential Equations. Dynamical Systems and Linear Algebra, Academic Press, New York, (1974). Zbl0309.34001MR486784
- S. Ito and M. Kimura, On the Rauzy fractal. Japan J. Indust. Appl. Math. 8 (1991), 461–486. Zbl0734.28010MR1137652
- S. Ito and Y. Sano, On periodic - expansions of Pisot numbers and Rauzy fractals. Osaka J. Math. 38 (2001), 349–368. Zbl0991.11040MR1833625
- J. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type. Discrete Comput. Geom. 21 no 2 (1999), 161–191. Zbl0924.68190MR1668082
- J.C. Lagarias, Geometrical models for quasicrystals. II. Local rules under isometry. Disc. and Comp. Geom., 21 no 3 (1999), 345–372. Zbl0930.51019MR1672976
- J.C. Lagarias, Mathematical Quasicrystals and the problem of diffraction. Directions in Mathematical Physics, CRM Monograph Series, Vol 13, Ed. M. Baake and R.V. Moody, (2000), 61–94. Zbl1161.52312MR1798989
- D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Th. & Dynam. Sys. 4 (1984), 283–300. Zbl0546.58035MR766106
- A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor. Nombres Bordeaux, 10 (1998), 135–162. Zbl0918.11048MR1827290
- A. Messaoudi, Frontière du fractal de Rauzy et système de numérotation complexe Acta Arith. 95 (2000), 195–224. Zbl0968.28005MR1793161
- Y. Meyer, Algebraic Numbers and Harmonic Analysis. North-Holland (1972). Zbl0267.43001MR485769
- H. Minc, Nonnegative matrices. John Wiley and Sons, New York (1988). Zbl0638.15008MR932967
- R.V. Moody, Meyer sets and their duals The Mathematics of Long-Range Aperiodic Order, Ed. By R.V. Moody, Kluwer Academic Publishers, (1997), 403–441. Zbl0880.43008MR1460032
- G. Muraz and J.-L. Verger-Gaugry, On lower bounds of the density of packings of equal spheres of . Institut Fourier, preprint n580 (2003).
- W. Parry, On the - expansions of real numbers. Acta Math. Acad. Sci. Hung. 11 (1960), 401–416. Zbl0099.28103MR142719
- N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math. 1794, Springer-Verlag, (2003). Zbl1014.11015MR1970385
- G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France, 110 (1982), 147–178. Zbl0522.10032MR667748
- A. Renyi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477–493. Zbl0079.08901MR97374
- D. Ruelle, Statistical Mechanics; Rigorous results. Benjamin, New York, (1969). Zbl0177.57301MR289084
- J. Schmeling, Symbolic dynamics for - shifts and self-normal numbers. Ergod. Th. & Dynam. Sys. 17 (1997), 675–694. Zbl0908.58017MR1452189
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. Zbl0494.10040MR576976
- B. Solomyak, Dynamics of Self-Similar Tilings. Ergod. Th. & Dynam. Sys. 17 (1997), 695–738. Zbl0884.58062MR1452190
- W. ThurstonGroups, tilings and finite state automata. Preprint (1989).
Citations in EuDML Documents
top- Jean-Pierre Gazeau, Jean-Louis Verger-Gaugry, Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number
- Jean-Louis Verger-Gaugry, On gaps in Rényi -expansions of unity for an algebraic number
- Wolfgang Steiner, On the structure of (−β)-integers
- Gilbert Muraz, Jean-Louis Verger-Gaugry, On a generalization of the Selection Theorem of Mahler
- Wolfgang Steiner, On the structure of (−)-integers
- Valérie Berthé, Timo Jolivet, Anne Siegel, Connectedness of fractals associated with Arnoux–Rauzy substitutions
- Guy Barat, Valérie Berthé, Pierre Liardet, Jörg Thuswaldner, Dynamical directions in numeration
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.