Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation
Joris Bols; Joris Degroote; Bram Trachet; Benedict Verhegghe; Patrick Segers; Jan Vierendeels
- Volume: 47, Issue: 4, page 1059-1075
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Trachet, M. Renard, G. De Santis, S. Staelens, J. De Backer, L. Antiga, B. Loeys and P. Segers, An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE -/- mice. Annal. Biomed. Eng.39 (2011) 2430–2444.
- [2] H.J. Kim, I.E. Vignon-Clementel, C.A. Figueroa, J.F. LaDisa, K.E. Jansen, J.A. Feinstein and C.A. Taylor, On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annal. Biomed. Eng.37 (2009) 2153–2169.
- [3] J. Degroote, I. Couckuyt, J. Vierendeels, P. Segers and T. Dhaene, Inverse modelling of an aneurysms stiffness using surrogate-based optimization and fluid-structure interaction simulations. Struct. Multidiscip. Optim. (2012) 1–13. Zbl1274.74102
- [4] J. Lu, X. Zhou and M.L. Raghavan, Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. J. Biomech.40 (2007) 693–6.
- [5] S. de Putter, B.J.B.M. Wolters, M.C.M. Rutten, M. Breeuwer, F.A. Gerritsen and F.N. van de Vosse, Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech.40 (2007) 1081–1090.
- [6] M.W. Gee, C. Reeps, H.H. Eckstein and W.A. Wall, Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech.42 (2009) 1732–1739.
- [7] L. Speelman, E.M.H. Bosboom, G.W.H. Schurink, J. Buth, M. Breeuwer, M.J. Jacobs and F.N. van de Vosse, Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech.42 (2009) 1713–1719.
- [8] M.A.G. Merkx, M. van ’t Veer, L. Speelman, M. Breeuwer, J. Buth and F.N. van de Vosse, Importance of initial stress for abdominal aortic aneurysm wall motion: Dynamic MRI validated finite element analysis. J. Biomech. 42 (2009) 2369–2373.
- [9] S. Govindjee and P.A. Mihalic, Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng.136 (1996) 47–57. Zbl0918.73117
- [10] S. Govindjee and P.A. Mihalic, Computational methods for inverse deformations in quasi-incompressible finite elasticity. Inter. J. Numer. Methods Eng.43 (1998) 821–838. Zbl0937.74064
- [11] V.D. Fachinotti, A. Cardona and P. Jetteur, Finite element modelling of inverse design problems in large deformations anisotropic hyperelasticity. Inter. J. Numer. Methods Eng.74 (2008) 894–910. Zbl1158.74369MR2389139
- [12] R. Haelterman, J. Degroote, D. Van Heule and J. Vierendeels, The quasi-newton least squares method: A new and fast secant method analyzed for linear systems. SIAM J. Numer. Anal.47 (2009) 2347–2368. Zbl1197.65041MR2519606
- [13] J. Degroote, K.J. Bathe and J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct.87 (2009) 793–801.
- [14] R. Haelterman, J. Degroote, D. Van Heule and J. Vierendeels, On the similarities between the quasi-newton inverse least squares method and GMRes. SIAM J. Numer. Anal.47 (2010) 4660–4679. Zbl1209.65048MR2595053
- [15] J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman and J. Vierendeels. Performance of partitioned procedures in fluid-structure interaction. Comput. Struct.88 (2010) 446–457.
- [16] M.L. Raghavan, B. Ma and M. Fillinger, Non-invasive determination of zero-pressure geometry of arterial aneurysms. Annal. Biomedical Eng.34 (2006) 1414–1419.
- [17] M.W. Gee, Ch. Förster and W.A. Wall, A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Inter. J. Numer. Methods Biomedical Eng.26 (2010) 52–72. Zbl1180.92009
- [18] V. Alastrué, A. Garía, E. Peña, J.F. Rodríguez, M.A. Martínez and M. Doblaré, Numerical framework for patient-specific computational modelling of vascular tissue. Inter. J. Numer. Methods Biomedical Eng.26 (2010) 35–51. Zbl1180.92036
- [19] L. Speelman, A.C. Akyildiz, B. den Adel, J.J. Wentzel, A.F.W. van der Steen, R. Virmani, L. van der Weerd, J.W. Jukema, R.E. Poelmann, E.H. van Brummelen and F.J.H. Gijsen, Initial stress in biomechanical models of atherosclerotic plaques. J. Biomech.44 (2011) 2376–2382.
- [20] P. M. Pinsky, D. van der Heide and D. Chernyak, Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg.31 (2005) 136–45.
- [21] Y. Bazilevs, M.C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel and J. Isaksen, Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech. Model. Mechanobiol.9 (2010) 481–498.
- [22] M. C. Hsu and Y. Bazilevs, Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des.47 (2011) 593–599. MR2786927
- [23] P.J. Prendergast, C. Lally, S. Daly, A.J. Reid, T.C. Lee, D. Quinn and F. Dolan, Analysis of prolapse in cardiovascular stents: A constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng.125 (2003) 692–699.
- [24] http://www.pyformex.org
- [25] G. De Santis, M. De Beule, K. Van Canneyt, P. Segers, P. Verdonck and B. Verhegghe, Full-hexahedral structured meshing for image-based computational vascular modeling. Medical Eng. Phys.33 (2011) 1318–1325.