Optimized Schwarz Methods for the Bidomain system in electrocardiology

Luca Gerardo-Giorda; Mauro Perego

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 2, page 583-608
  • ISSN: 0764-583X

Abstract

top
The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in accelerating the convergence of such algorithms. The latter are based on interface matching conditions more efficient than the classical Dirichlet or Neumann ones. In this paper we analyze an Optimized Schwarz approach for the numerical solution of the Bidomain problem. We assess the convergence of the iterative method by means of Fourier analysis, and we investigate the parameter optimization in the interface conditions. Numerical results in 2D and 3D are given to show the effectiveness of the method.

How to cite

top

Gerardo-Giorda, Luca, and Perego, Mauro. "Optimized Schwarz Methods for the Bidomain system in electrocardiology." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.2 (2013): 583-608. <http://eudml.org/doc/273092>.

@article{Gerardo2013,
abstract = {The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in accelerating the convergence of such algorithms. The latter are based on interface matching conditions more efficient than the classical Dirichlet or Neumann ones. In this paper we analyze an Optimized Schwarz approach for the numerical solution of the Bidomain problem. We assess the convergence of the iterative method by means of Fourier analysis, and we investigate the parameter optimization in the interface conditions. Numerical results in 2D and 3D are given to show the effectiveness of the method.},
author = {Gerardo-Giorda, Luca, Perego, Mauro},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {domain decomposition; optimized schwarz methods; computational electrocardiology; optimized Schwarz methods},
language = {eng},
number = {2},
pages = {583-608},
publisher = {EDP-Sciences},
title = {Optimized Schwarz Methods for the Bidomain system in electrocardiology},
url = {http://eudml.org/doc/273092},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Gerardo-Giorda, Luca
AU - Perego, Mauro
TI - Optimized Schwarz Methods for the Bidomain system in electrocardiology
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 2
SP - 583
EP - 608
AB - The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in accelerating the convergence of such algorithms. The latter are based on interface matching conditions more efficient than the classical Dirichlet or Neumann ones. In this paper we analyze an Optimized Schwarz approach for the numerical solution of the Bidomain problem. We assess the convergence of the iterative method by means of Fourier analysis, and we investigate the parameter optimization in the interface conditions. Numerical results in 2D and 3D are given to show the effectiveness of the method.
LA - eng
KW - domain decomposition; optimized schwarz methods; computational electrocardiology; optimized Schwarz methods
UR - http://eudml.org/doc/273092
ER -

References

top
  1. [1] LifeV software. http://www.LifeV.org. 
  2. [2] Trilinos software. http://trilinos.sandia.gov. 
  3. [3] A. Alonso-Rodriguez and L. Gerardo-Giorda, New non-overlapping domain decomposition methods for the time-harmonic Maxwell system. SIAM J. Sci. Comput.28 (2006) 102–122. Zbl1106.78014MR2219289
  4. [4] P. Bochev and R. Lehouc, On the finite element solution of the pure Neumann problem. SIAM Rev.47 (2005) 50–66. Zbl1084.65111MR2149101
  5. [5] T.F. Chan and T.P. Mathew, Domain decomposition algorithms, in Acta Numerica 1994. Cambridge University Press (1994) 61–143. Zbl0809.65112MR1288096
  6. [6] P. Charton, F. Nataf and F. Rogier, Méthode de décomposition de domaine pour l’équation d’advection-diffusion. C. R. Acad. Sci.313 (1991) 623–626. Zbl0736.76042MR1133498
  7. [7] P. Chevalier and F. Nataf, Symmetrized method with optimized second-order conditions for the Helmholtz equation, in Domain decomposition methods (Boulder, CO, 1997). Amer. Math. Soc. 10 (1998) 400–407. Zbl0909.65105MR1649636
  8. [8] R.H. Clayton, O.M. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann and H. Zhang, Models of cardiac tissue electrophysiology : Progress, challenges and open questions. Progr. Bioph. Molec. Biol.104 (2011) 22–48. 
  9. [9] R.H. Clayton and A.V. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr. Bioph. Molec. Biol.96 (2008) 19–43. 
  10. [10] P. Colli Franzone and L.F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci.14 (2004) 883–911. Zbl1068.92024MR2069498
  11. [11] P. Colli Franzone, L. Pavarino and G. Savaré, Computational electrocardiology : mathematical and numerical modeling, in Complex Systems in Biomedicine – A. Quarteroni, edited by L. Formaggia and A. Veneziani. Springer, Milan (2006). MR2488001
  12. [12] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis, edited by A. Lorenzi and B. Ruf. Birkhauser (2002) 49–78. Zbl1036.35087MR1944157
  13. [13] Q. Deng, An analysis for a nonoverlapping domain decomposition iterative procedure. SIAM J. Sci. Comput.18 (1997) 1517–1525. Zbl0892.65074MR1465670
  14. [14] V. Dolean and F. Nataf, An Optimized Schwarz Algorithm for the compressible Euler equations, in Domain Decomposition Methods in Science and Engineering XVI (Proceedings of the DD16 Conference). Springer-Verlag (2007) 173–180. Zbl1213.76124MR2334101
  15. [15] V. Dolean, M.J. Gander and L. Gerardo-Giorda, Optimized Schwarz Methods for Maxwell’s equations. SIAM J. Sci. Comput.31 (2009) 2193–2213. Zbl1192.78044MR2516149
  16. [16] O. Dubois, Optimized Schwarz Methods with Robin conditions for the Advection-Diffusion Equation, in Domain Decomposition Methods in Science and Engineering XVI (Proceedings of the DD16 Conference). Springer-Verlag (2007) 181–188. Zbl1183.65030MR2334102
  17. [17] B. Engquist and H.-K. Zhao, Absorbing boundary conditions for domain decomposition. Appl. Numer. Math.27 (1998) 341–365. Zbl0935.65135MR1644668
  18. [18] E. Faccioli, F. Maggio, A. Quarteroni and A. Tagliani, Spectral domain decomposition methods for the solution of acoustic and elastic wave propagation. Geophys.61 (1996) 1160–1174. 
  19. [19] E. Faccioli, F. Maggio, A. Quarteroni and A. Tagliani, 2d and 3d elastic wave propagation by pseudo-spectral domain decomposition method. J. Seismology1 (1997) 237–251. 
  20. [20] M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal.44 (2006) 699–731. Zbl1117.65165MR2218966
  21. [21] M.J. Gander and L. Halpern, Méthodes de relaxation d’ondes pour l’équation de la chaleur en dimension 1. C. R. Acad. Sci. Paris, Sér. I 336 (2003) 519–524. Zbl1028.65100MR1975090
  22. [22] M.J. Gander, L. Halpern and F. Magoulès, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Meth. Fluids55 (2007) 163–175. Zbl1125.65114MR2344706
  23. [23] M.J. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal.41 (2003) 1643–1681. Zbl1085.65077MR2035001
  24. [24] M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput.24 (2002) 38–60. Zbl1021.65061MR1924414
  25. [25] L. Gerardo-Giorda, L. Mirabella, M. Perego and A. Veneziani, A model adaptive strategy for computational electrocardiology. Domain Decomposition Methods in Science and Engineering XXI (Proceedings of the DD21 Conference). Springer-Verlag. To appear (2013). Zbl1187.92053
  26. [26] L. Gerardo-Giorda, L. Mirabella, F. Nobile, M. Perego and A. Veneziani, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comput. Phys.228 (2009) 3625–3639. Zbl1187.92053MR2511070
  27. [27] L. Gerardo-Giorda, F. Nobile and C. Vergara, Analysis and optimization of Robin–Robin partitioned procedures in Fluid-Structure Interaction problems. SIAM J. Numer. Anal.48 (2010) 2091–2116. Zbl05931231MR2740543
  28. [28] L. Gerardo-Giorda, M. Perego and A. Veneziani, Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology. ESAIM : M2AN 45 (2011) 309–334. Zbl1274.92022MR2804641
  29. [29] T. Hagstrom, R.P. Tewarson and A. Jazcilevich, Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems. Appl. Math. Lett.1 (1988) 299–302. Zbl0656.65097MR963704
  30. [30] C.S. Henriquez, Simulating the electrical behavior of cardiac tissue using the Bidomain model. Crit. Rev. Biomed. Eng.21 (1993) 1–77. 
  31. [31] C. Japhet, F. Nataf and F. Rogier, The optimized order 2 method : Application to convection-diffusion problems. Future Gener. Comp. Syst.18 (2001) 17–30. Zbl1050.65124
  32. [32] S. Linge, J. Sundnes, M. Hanslien, G.T. Lines and A. Tveito, Numerical solution of the bidomain equations. Phil. Trans. R. Soc. A.367 (2009) 1931–1950. Zbl1185.65169MR2512073
  33. [33] G.T. Lines, M.L. Buist, P. Grottum, A.J. Pullan, J. Sundnes and A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Comput. Vis. Sci.5 (2003) 215–239. Zbl1050.92017
  34. [34] P.-L. Lions, On the Schwarz alternating method. III : a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, edited by T.F. Chan, R. Glowinski, J. Périaux and O. Widlund, SIAM Philadelphia, PA (1990). Zbl0704.65090MR1064345
  35. [35] L. Luo and Y. Rudy, A model of the ventricular cardiac action potential : depolarization, repolarization and their interaction. Circ. Res.68 (1991) 1501–1526. 
  36. [36] L. Mirabella, F. Nobile and A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology. Comput. Methods Appl. Mech. Eng.200 (2011) 2727–2737. Zbl1230.92026MR2811911
  37. [37] M. Munteanu, L.F. Pavarino and S. Scacchi, A scalable Newton–Krylov–Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput.3 (2009) 3861–3883. Zbl1205.65261MR2556566
  38. [38] F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm. M3AS 5 (1995) 67–93. Zbl0826.65102MR1314997
  39. [39] L.F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput.31 (2008) 420–443. Zbl1185.65179MR2460784
  40. [40] L.F. Pavarino and S. Scacchi, Parallel Multilevel Schwarz and block preconditioners for the Bidomain parabolic-parabolic and parabolic-elliptic formulations. SIAM J. Sci. Comput.33 (2011) 1897–1919. Zbl1233.65070MR2831039
  41. [41] M. Pennacchio and V. Simoncini, Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math.145 (2002) 49–70. Zbl1006.65102MR1914350
  42. [42] M. Pennacchio and V. Simoncini, Algebraic multigrid preconditioners for the Bidomain reaction-diffusion system. Appl. Numer. Math.59 (2009) 3033–3050. Zbl1171.92017MR2560833
  43. [43] M. Pennacchio and V. Simoncini, Non-symmetric Algebraic Multigrid Preconditioners for the Bidomain reaction-diffusion system, in Numerical Mathematics and Advanced Applications, ENUMATH 2009, Part 2 (2010) 729–736. Zbl05896827MR2560833
  44. [44] M. Perego and A. Veneziani, An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations. ETNA35 (2009) 234–256. Zbl1185.92005MR2582815
  45. [45] M. Potse, B. Dubé, J. Richer and A. Vinet, A comparison of Monodomain and Bidomain Reaction-Diffusion models for Action Potential Propagation in the Human Heart. IEEE Trans. Biomed. Eng. 53 (2006) 2425–2435,. 
  46. [46] A.J. Pullan, M.L. Buist and L.K. Cheng, Mathematical Modelling the Electrical Activity of the Heart. World Scientific, Singapore (2005). Zbl1120.92015MR2174981
  47. [47] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999). Zbl0931.65118MR1857663
  48. [48] B.J. Roth, Action potential propagation in a thick strand of cardiac muscle. Circ. Res.68 (1991) 162–173. 
  49. [49] F.B. Sachse, Computational Cardiology. Springer, Berlin (2004). Zbl1051.92025
  50. [50] S. Scacchi, A hybrid multilevel Schwarz method for the Bidomain model. Comput. Methods Appl. Mech. Eng.197 (2008) 4051–4061. Zbl1194.78048MR2458128
  51. [51] B.F. Smith, P.E. Bjørstad and W. Gropp. Domain Decomposition : Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press (1996). Zbl0857.65126MR1410757
  52. [52] J. Sundnes, G.T. Lines and A. Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci.194 (2005) 233–248. Zbl1063.92018MR2142490
  53. [53] A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math.86 (2000) 733–752. Zbl0980.78010MR1794350
  54. [54] A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Springer Ser. Comput. Math. 34 (2004). Zbl1069.65138
  55. [55] M. Veneroni, Reaction-diffusion systems for the macroscopic Bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl.10 (2009) 849–868. Zbl1167.35403MR2474265
  56. [56] E.J. Vigmond, F. Aguel and N.A. Trayanova, Computational techniques for solving the Bidomain equations in three dimensions. IEEE Trans. Biomed. Eng.49 (2002) 1260–1269. 
  57. [57] E.J. Vigmond, R. Weber dos Santos, A.J. Prassl, M. Deo and G. Plank, Solvers for the caridac Bidomain equations. Prog. Biophys. Mol. Biol. 96 (2008) 3–18. 
  58. [58] R. Weber dos Santos, G. Planck, S. Bauer and E.J. Vigmond, Parallel multigrid preconditioner for the cardiac Bidomain model. IEEE Trans. Biomed. Eng. 51 (2004) 1960–1968. 
  59. [59] J. Xu and J. Zou, Some nonoverlapping domain decomposition methods. SIAM Review40 (1998) 857–914. Zbl0913.65115MR1659681
  60. [60] J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Review34 (1992) 581–613. Zbl0788.65037MR1193013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.