Double greedy algorithms: Reduced basis methods for transport dominated problems

Wolfgang Dahmen; Christian Plesken; Gerrit Welper

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 3, page 623-663
  • ISSN: 0764-583X

Abstract

top
The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated by numerical experiments for convection-diffusion and pure transport equations. In particular, the latter example sheds some light on the smoothness of the dependence of the solutions on the parameters.

How to cite

top

Dahmen, Wolfgang, Plesken, Christian, and Welper, Gerrit. "Double greedy algorithms: Reduced basis methods for transport dominated problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 623-663. <http://eudml.org/doc/273103>.

@article{Dahmen2014,
abstract = {The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated by numerical experiments for convection-diffusion and pure transport equations. In particular, the latter example sheds some light on the smoothness of the dependence of the solutions on the parameters.},
author = {Dahmen, Wolfgang, Plesken, Christian, Welper, Gerrit},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {tight surrogates; stable variational formulations; saddle point problems; double greedy schemes; greedy stabilization; rate-optimality; transport equations; convection-diffusion equations},
language = {eng},
number = {3},
pages = {623-663},
publisher = {EDP-Sciences},
title = {Double greedy algorithms: Reduced basis methods for transport dominated problems},
url = {http://eudml.org/doc/273103},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Dahmen, Wolfgang
AU - Plesken, Christian
AU - Welper, Gerrit
TI - Double greedy algorithms: Reduced basis methods for transport dominated problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 623
EP - 663
AB - The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated by numerical experiments for convection-diffusion and pure transport equations. In particular, the latter example sheds some light on the smoothness of the dependence of the solutions on the parameters.
LA - eng
KW - tight surrogates; stable variational formulations; saddle point problems; double greedy schemes; greedy stabilization; rate-optimality; transport equations; convection-diffusion equations
UR - http://eudml.org/doc/273103
ER -

References

top
  1. [1] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence Rates for Greedy Algorithms in Reduced Basis Methods. SIAM J. Math. Anal.43 (2011) 1457–1472. Zbl1229.65193MR2821591
  2. [2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, in vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991). Zbl0788.73002MR1115205
  3. [3] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A Priori convergence of the greedy algorithm for the parameterized reduced basis. ESAIM: M2AN 46 (2012) 595–603. Zbl1272.65084MR2877366
  4. [4] J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal.46 (2008) 2524–2550. Zbl1176.65122MR2421046
  5. [5] A. Cohen, W. Dahmen and G. Welper, Adaptivity and Variational Stabilization for Convection-Diffusion Equations. ESAIM: M2AN 46 (2012) 1247–1273. Zbl1270.65065MR2916380
  6. [6] W. Dahmen, Parameter dependent transport equations, in Workshop J.L.L.-SMP: Reduced Basis Methods in High Dimensions. Available at http://www.ljll.math.upmc.fr/fr/archives/actualites/2011/workshop˙ljll˙smp˙rbihd.html 
  7. [7] W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov−Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420–2445. Zbl1260.65091MR3022225
  8. [8] L.F. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov−Galerkin Methods I: The transport equation. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1558–1572. Zbl1231.76142MR2630162
  9. [9] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov−Galerkin methods. Part II: Optimal test functions. Numer. Methods for Partial Differ. Equ. 27 (2011) 70–105. Zbl1208.65164MR2743600
  10. [10] S. Deparis, Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Numer. Anal.46 (2008) 2039–2067. Zbl1177.35148MR2399407
  11. [11] R. DeVore, G. Petrova and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces, Constructive Approximation37 (2013) 455–466. Zbl1276.41021MR3054611
  12. [12] A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer (2004). Zbl1059.65103MR2050138
  13. [13] A. Gerner and K. Veroy-Grepl, Certified reduced basis methods for parametrized saddle point problems, preprint (2012). To appear in SIAM J. Sci. Comput. Zbl1255.76024MR3023727
  14. [14] A.-L. Gerner and K. Veroy, Reduced basis a posteriori error bounds for the Stokes equations in parameterized domains: A penalty approach. M3AS: Math. Models Methods Appl. Sci. 21 (2011) 2103–2134. Zbl06045578MR2851708
  15. [15] M.A. Grepl, Certified Reduced Basis Methods for Nonaffine Linear Time-Varying and Nonlinear Parabolic Partial Differential Equations. M3AS: Math. Models Methods Appl. Sci. 22 (2012) 40. Zbl1241.35116MR2890453
  16. [16] M.A. Grepl and A.T. Patera, A Posteriori Error Bounds for Reduced-Basis Approximations of Parametrized Parabolic Partial Differential Equations. ESAIM: M2AN 39 (2005) 157–181. Zbl1079.65096MR2136204
  17. [17] B. Haasdonk, Convergence rates for the POD-greedy method. ESAIM: M2AN 47 (2013) 859–873. Zbl1277.65074MR3056412
  18. [18] T. Hughes and G. Sangalli, Variational Multiscale Analysis: the Fine-scale Green’s Function, Projection, Optimization, Localization, and Stabilized Methods. SIAM J. Numer. Anal. 45 (2007) 539–557. Zbl1152.65111MR2300286
  19. [19] G. Kanschat, E. Meinköhn, R. Rannacher and R. Wehrse, Numerical methods in multidimensional radiative transfer, Springer (2009). Zbl1155.65004MR2530844
  20. [20] G.G. Lorentz, M. von Golitschek and Yu. Makovoz, Constructive approximation: Advanced problems, vol. 304. Springer Grundlehren, Berlin (1996). Zbl0910.41001MR1393437
  21. [21] Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J. Sci. Comput.17 (2002) 437–446. Zbl1014.65115MR1910581
  22. [22] T. Manteuffel, S. McCormick, J. Ruge and J.G. Schmidt, First-order system ℒℒ∗ (FOSLL)∗ for general scalar elliptic problems in the plane. SIAM J. Numer. Anal. 43 (2005) 2098–2120. Zbl1103.65117MR2192333
  23. [23] N.-C. Nguyen, G. Rozza and A.T. Patera, Reduced basis approximation for the time-dependent viscous Burgers’ equation. Calcolo46 (2009) 157–185. Zbl1178.65109MR2533748
  24. [24] T. Patera and K. Urban, An improved error bound for reduced basis approximation of linear parabolic problems, submitted to Mathematics of Computation (in press 2013). Zbl1320.65129
  25. [25] A.T. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006–2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. Zbl1304.65251
  26. [26] H.-J. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, in vol. 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd Edition (2008). Zbl1155.65087MR2454024
  27. [27] G. Rozza and D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estiamtion for Stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numer. Math. DOI: 10.1007/s00211-013-0534-8. Zbl1318.76006MR3090657
  28. [28] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng.15 (2008) 229–275. Zbl1304.65251MR2430350
  29. [29] G. Rozza and K. Veroy, On the stability of reduced basis techniques for Stokes equations in parametrized domains. Comput. Methods Appl. Mechanics Engrg.196 (2007) 1244–1260. Zbl1173.76352MR2281777
  30. [30] G. Sangalli, A uniform analysis of non-symmetric and coercive linear operators. SIAM J. Math. Anal.36 (2005) 2033–2048. Zbl1114.35060MR2178232
  31. [31] M. Schlottbom, On Forward and Inverse Models in Optical Tomography, Ph.D. Thesis. RWTH Aachen (2011). 
  32. [32] S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyn and A.T. Patera, Natural norm a posteriori error estimators for reduced basis approximations. J. Comput. Phys.217 (2006) 37–62. Zbl1100.65094MR2250524
  33. [33] R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal.43 (2005) 1766–1782. Zbl1099.65100MR2182149
  34. [34] G. Welper, Infinite dimensional stabilization of convection-dominated problems, Ph.D. Thesis. RWTH Aachen (2012). 
  35. [35] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo and V. Calo, A class of discontinuous Petrov−Galerkin methods. Part IV: Wave propagation. J. Comput. Phys. 230 (2011) 2406–2432. Zbl1316.76054MR2772923

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.