Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time
Alexei Lozinski; Jacek Narski; Claudia Negulescu
- Volume: 48, Issue: 6, page 1701-1724
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLozinski, Alexei, Narski, Jacek, and Negulescu, Claudia. "Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1701-1724. <http://eudml.org/doc/273107>.
@article{Lozinski2014,
abstract = {This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.},
author = {Lozinski, Alexei, Narski, Jacek, Negulescu, Claudia},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {anisotropic parabolic equation; ill-conditioned problem; singular perturbation model; limit model; asymptotic preserving scheme; stability; nonlinear heat equation; Runge-Kutta scheme},
language = {eng},
number = {6},
pages = {1701-1724},
publisher = {EDP-Sciences},
title = {Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time},
url = {http://eudml.org/doc/273107},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Lozinski, Alexei
AU - Narski, Jacek
AU - Negulescu, Claudia
TI - Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1701
EP - 1724
AB - This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.
LA - eng
KW - anisotropic parabolic equation; ill-conditioned problem; singular perturbation model; limit model; asymptotic preserving scheme; stability; nonlinear heat equation; Runge-Kutta scheme
UR - http://eudml.org/doc/273107
ER -
References
top- [1] D. Aronson, The porous medium equation. Nonlinear Diffusion Problems, edited by A. Fasano, M. Primicerio. Lect. Notes Math. 1224 (1986) 1–46. Zbl0626.76097MR877986
- [2] S.F. Ashby, W.J. Bosl, R.D. Falgout, S.G. Smith, A.F. Tompson and T.J. Williams, A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers. Int. J. High Performance Comput. Appl.13 (1999) 80–93.
- [3] P. Basser and D. Jones, Diffusion-tensor mri: theory, experimental design and data analysis–a technical review. NMR Biomedicine15 (2002) 456–467.
- [4] C. Beaulieu, The basis of anisotropic water diffusion in the nervous system–a technical review. NMR Biomedicine15 (2002) 435–455.
- [5] B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources25 (2002) 861–884.
- [6] P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations. Commun. Math. Sci.10 (2012) 1–31. Zbl1272.65090MR2901299
- [7] P. Degond, A. Lozinski, J. Narski and C. Negulescu, An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comput. Phys.231 (2012) 2724–2740. Zbl1332.65165MR2882095
- [8] Y. Dubinskii, Some integral inequalities and the solvability of degenerate quasi-linear elliptic systems of differential equations. Matematicheskii Sbornik106 (1964) 458–480. Zbl0174.42501MR168904
- [9] Y. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations. Matematicheskii Sbornik109 (1965) 609–642. Zbl0177.37403MR190546
- [10] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Stud. Adv. Math. CRC press (1992). Zbl0804.28001MR1158660
- [11] S. Günter, K. LacknerC. Tichmann, Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas. J. Comput. Phys. 226 (2007) 2306–2316. Zbl05207665
- [12] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Ser. Comput. Math. Springer-Verlag, New York (1987). Zbl0729.65051
- [13] H. Jian and B. Song, Solutions of the anisotropic porous medium equation in Rn under an l1-initial value. Nonlinear Anal.64 (2006) 2098–2111. Zbl1100.35059MR2211202
- [14] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput.21 (1999) 441–454. Zbl0947.82008MR1718639
- [15] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars (1969). Zbl0189.40603
- [16] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York (1972). Zbl0223.35039MR350177
- [17] H. Lutjens and J. Luciani, The xtor code for nonlinear 3d simulations of mhd instabilities in tokamak plasmas. J. Comput. Phys.227 (2008) 6944–6966. Zbl05303093MR2435437
- [18] A. Mentrelli and C. Negulescu, Asymptotic preserving scheme for highly anisotropic, nonlinear diffusion equations J. Comput. Phys.231 (2012) 8229–8245. MR2979850
- [19] W. Park, E. Belova, G. Fu, X. Tang, H. StraussL. Sugiyama, Plasma simulation studies using multilevel physics models. Phys. Plasmas 6 (1999) 1796.
- [20] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Trans. 12 (1990) 629–639.
- [21] M. Pierre, personal e-mail (2011).
- [22] J. Narski, Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation. Preprint arXiv:1302.4269 (2013).
- [23] J. Narski and M. Ottaviani, Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction. Preprint arXiv:1303.5219 (2013).
- [24] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688
- [25] P. Tamain, Etude des flux de matière dans le plasma de bord des tokamaks. Ph.D. Thesis, Marseille 1 (2007).
- [26] J. Vázquez, The porous medium equation: mathematical theory. Oxford University Press, USA (2007). Zbl1107.35003
- [27] J. Weickert, Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B.G. Teubner, Stuttgart (1998). Zbl0886.68131MR1666943
- [28] J. Wesson, Tokamaks. Oxford University Press, New York (1987). Zbl1111.82054
- [29] O.C. Zienkiewicz and R.L. Taylor, The finite element method. Vol. 1. Butterworth-Heinemann, Oxford (2000). Zbl0991.74002MR1897985
- [30] J. Wloka, Partial diflerential equations. Cambridge University Press (1987). Zbl0623.35006MR895589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.