Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time

Alexei Lozinski; Jacek Narski; Claudia Negulescu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 6, page 1701-1724
  • ISSN: 0764-583X

Abstract

top
This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.

How to cite

top

Lozinski, Alexei, Narski, Jacek, and Negulescu, Claudia. "Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1701-1724. <http://eudml.org/doc/273107>.

@article{Lozinski2014,
abstract = {This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.},
author = {Lozinski, Alexei, Narski, Jacek, Negulescu, Claudia},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {anisotropic parabolic equation; ill-conditioned problem; singular perturbation model; limit model; asymptotic preserving scheme; stability; nonlinear heat equation; Runge-Kutta scheme},
language = {eng},
number = {6},
pages = {1701-1724},
publisher = {EDP-Sciences},
title = {Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time},
url = {http://eudml.org/doc/273107},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Lozinski, Alexei
AU - Narski, Jacek
AU - Negulescu, Claudia
TI - Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1701
EP - 1724
AB - This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.
LA - eng
KW - anisotropic parabolic equation; ill-conditioned problem; singular perturbation model; limit model; asymptotic preserving scheme; stability; nonlinear heat equation; Runge-Kutta scheme
UR - http://eudml.org/doc/273107
ER -

References

top
  1. [1] D. Aronson, The porous medium equation. Nonlinear Diffusion Problems, edited by A. Fasano, M. Primicerio. Lect. Notes Math. 1224 (1986) 1–46. Zbl0626.76097MR877986
  2. [2] S.F. Ashby, W.J. Bosl, R.D. Falgout, S.G. Smith, A.F. Tompson and T.J. Williams, A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers. Int. J. High Performance Comput. Appl.13 (1999) 80–93. 
  3. [3] P. Basser and D. Jones, Diffusion-tensor mri: theory, experimental design and data analysis–a technical review. NMR Biomedicine15 (2002) 456–467. 
  4. [4] C. Beaulieu, The basis of anisotropic water diffusion in the nervous system–a technical review. NMR Biomedicine15 (2002) 435–455. 
  5. [5] B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources25 (2002) 861–884. 
  6. [6] P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations. Commun. Math. Sci.10 (2012) 1–31. Zbl1272.65090MR2901299
  7. [7] P. Degond, A. Lozinski, J. Narski and C. Negulescu, An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comput. Phys.231 (2012) 2724–2740. Zbl1332.65165MR2882095
  8. [8] Y. Dubinskii, Some integral inequalities and the solvability of degenerate quasi-linear elliptic systems of differential equations. Matematicheskii Sbornik106 (1964) 458–480. Zbl0174.42501MR168904
  9. [9] Y. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations. Matematicheskii Sbornik109 (1965) 609–642. Zbl0177.37403MR190546
  10. [10] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Stud. Adv. Math. CRC press (1992). Zbl0804.28001MR1158660
  11. [11] S. Günter, K. LacknerC. Tichmann, Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas. J. Comput. Phys. 226 (2007) 2306–2316. Zbl05207665
  12. [12] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Ser. Comput. Math. Springer-Verlag, New York (1987). Zbl0729.65051
  13. [13] H. Jian and B. Song, Solutions of the anisotropic porous medium equation in Rn under an l1-initial value. Nonlinear Anal.64 (2006) 2098–2111. Zbl1100.35059MR2211202
  14. [14] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput.21 (1999) 441–454. Zbl0947.82008MR1718639
  15. [15] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars (1969). Zbl0189.40603
  16. [16] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York (1972). Zbl0223.35039MR350177
  17. [17] H. Lutjens and J. Luciani, The xtor code for nonlinear 3d simulations of mhd instabilities in tokamak plasmas. J. Comput. Phys.227 (2008) 6944–6966. Zbl05303093MR2435437
  18. [18] A. Mentrelli and C. Negulescu, Asymptotic preserving scheme for highly anisotropic, nonlinear diffusion equations J. Comput. Phys.231 (2012) 8229–8245. MR2979850
  19. [19] W. Park, E. Belova, G. Fu, X. Tang, H. StraussL. Sugiyama, Plasma simulation studies using multilevel physics models. Phys. Plasmas 6 (1999) 1796. 
  20. [20] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Trans. 12 (1990) 629–639. 
  21. [21] M. Pierre, personal e-mail (2011). 
  22. [22] J. Narski, Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation. Preprint arXiv:1302.4269 (2013). 
  23. [23] J. Narski and M. Ottaviani, Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction. Preprint arXiv:1303.5219 (2013). 
  24. [24] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688
  25. [25] P. Tamain, Etude des flux de matière dans le plasma de bord des tokamaks. Ph.D. Thesis, Marseille 1 (2007). 
  26. [26] J. Vázquez, The porous medium equation: mathematical theory. Oxford University Press, USA (2007). Zbl1107.35003
  27. [27] J. Weickert, Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B.G. Teubner, Stuttgart (1998). Zbl0886.68131MR1666943
  28. [28] J. Wesson, Tokamaks. Oxford University Press, New York (1987). Zbl1111.82054
  29. [29] O.C. Zienkiewicz and R.L. Taylor, The finite element method. Vol. 1. Butterworth-Heinemann, Oxford (2000). Zbl0991.74002MR1897985
  30. [30] J. Wloka, Partial diflerential equations. Cambridge University Press (1987). Zbl0623.35006MR895589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.