High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues
G.-H. Cottet; J.-M. Etancelin; F. Perignon; C. Picard
- Volume: 48, Issue: 4, page 1029-1060
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCottet, G.-H., et al. "High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.4 (2014): 1029-1060. <http://eudml.org/doc/273120>.
@article{Cottet2014,
abstract = {This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context of hybrid computing and investigate their performance on GPU processors as a function of their order of accuracy.},
author = {Cottet, G.-H., Etancelin, J.-M., Perignon, F., Picard, C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {advection equations; particle methods; semi-lagrangian methods; GPU computing; multidimensional transport equation; particle method; remeshing; convergence; stability; semi-Lagrangian methods; numerical examples; algorithm},
language = {eng},
number = {4},
pages = {1029-1060},
publisher = {EDP-Sciences},
title = {High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues},
url = {http://eudml.org/doc/273120},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Cottet, G.-H.
AU - Etancelin, J.-M.
AU - Perignon, F.
AU - Picard, C.
TI - High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 4
SP - 1029
EP - 1060
AB - This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context of hybrid computing and investigate their performance on GPU processors as a function of their order of accuracy.
LA - eng
KW - advection equations; particle methods; semi-lagrangian methods; GPU computing; multidimensional transport equation; particle method; remeshing; convergence; stability; semi-Lagrangian methods; numerical examples; algorithm
UR - http://eudml.org/doc/273120
ER -
References
top- [1] M. Bergdorf, G.-H. Cottet and P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul.4 (2005) 328–357. Zbl1088.76055MR2164720
- [2] M. Bergdorf and P. Koumoutsakos, A lagrangian particle-wavelet method. SIAM Multiscale Model. Simul.5 (2006) 980–995. Zbl1122.65085MR2272307
- [3] F. Büyükkeçeci, O. Awile and I. Sbalzarini, A portable opencl implementation of generic particle-mesh and mesh-particle interpolation in 2d and 3d. Parallel Comput.39 (2013) 94–111.
- [4] A. Chorin, Numerical study of slightly viscous flow. J. Fluid Mech.57 (1973) 785–796. MR395483
- [5] C. Cocle, G. Winckelmans and G. Daeninck, Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys.227 (2008) 9091–9120. Zbl05355893MR2463200
- [6] C. Cotter, J. Frank and S. Reich, The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc.133 (2007) 251–260.
- [7] G.-H. Cottet and P. Koumoutsakos, Vortex methods. Cambridge University Press (2000). Zbl0953.76001MR1755095
- [8] G.-H. Cottet and L. Weynans, Particle methods revisited: a class of high order finite-difference methods. C.R. Math.343 (2006) 51–56. Zbl1096.65084MR2241959
- [9] N. Crouseilles, T. Respaud and E. Sonnendrücker, A forward semi-lagrangian method for the numerical solution of the vlasov equation. Comput. Phys. Commun.180 (2009) 1730–1745. Zbl1197.82012MR2678446
- [10] R. Hockney and J. Eastwood, Simulation Using Particles. Inst. Phys. Publ. (1988). Zbl0662.76002
- [11] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov and A. Fasih, PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput.38 (2012) 157–174.
- [12] P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys.138 (1997) 821–857. Zbl0902.76080MR1607496
- [13] P. Koumoutsakos and A. Leonard, High resolution simulation of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech.296 (1995) 1–38. Zbl0849.76061
- [14] S. Labbé, J. Laminie and V. Louvet, Méthodologie et environnement de développement orientés objets: de l’analyse mathématique à la programmation. MATAPLI70 (2003) 79–92.
- [15] J.-B. Lagaert, G Balarac, and G.-H. Cottet, Hybrid spectral particle method for turbulent transport of passive scalar. J. Comput. Phys. 260 (2014) 127–142. MR3151833
- [16] A. Leonard. Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech.17 (1985) 523–559. Zbl0596.76026
- [17] R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal.33 (1996) 627–665. Zbl0852.76057MR1388492
- [18] A. Magni and G.-H. Cottet, Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys.231 (2012) 152–172. Zbl06044227MR2846992
- [19] J. Monaghan, Extrapolating B splines for interpolation. J. Comput. Phys.60 (1985) 253–262. Zbl0588.41005MR805872
- [20] J. Monaghan, An introduction to sph. Comput. Phys. Commun.48 (1988) 89–96. Zbl0673.76089
- [21] A. Munshi, The OpenCL Specification. Khronos OpenCL Working Group (2011).
- [22] M. Ould-Salihi, G.-H. Cottet and M. El Hamraoui, Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Sci. Comput.22 (2000) 1655–1674. Zbl0993.76057MR1813291
- [23] T. Respaud and E. Sonnendruücker, Analysis of a new class of forward semi-lagrangian schemes for the 1d Vlasov-Poisson equations. Numer. Math.118 (2011) 329–366. Zbl1284.65145MR2800712
- [24] D. Rossinelli, M. Bergdorf, G.H. Cottet and P. Koumoutsakos, GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys.229 (2010) 3316–3333. Zbl1307.76066MR2601102
- [25] D. Rossinelli, C. Conti and P. Koumoutsakos, Mesh-particle interpolations on graphics processing units and multicorecentral processing units. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Engrg. Sci. 369 (2011) 2164–2175. Zbl1223.68122MR2795279
- [26] D. Rossinelli and P. Koumoutsakos, Vortex methods for incompressible flow simulations on the GPU. Visual Comput.24 (2008) 699–708.
- [27] G. Ruetsch and P. Micikevicius, Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note (2009).
- [28] I. Sbalzarini, J. Walther, M. Bergdorf, S. Hieber, E. Kotsalis and P. Koumoutsakos, PPM–a highly efficient parallel particle–mesh library for the simulation of continuum systems. J. Comput. Phys.215 (2006) 566–588. Zbl1173.76398
- [29] I. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math.4 (1946) 45–99. Zbl0061.28804MR15914
- [30] D. Valdez-Balderas, J. Dominguez, B. Rogers and A. Crespo, Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters. J. Parallel Distrib. Comput.73 (2012) 1483–1493.
- [31] F. De Vuyst and F. Salvarani, GPU-accelerated numerical simulations of the knudsen gas on time- dependent domains. Comput. Phys. Commun.184 (2013) 532–536. Zbl1302.76157MR3007037
- [32] R. Yokota, L. Barba, T. Narumi and K. Yasuoka, Petascale turbulence simulation using a highly parallel fast multipole method. Comput. Phys. Commun.184 (2013) 445–455. MR3007029
- [33] Y. Zhang, J. Cohen and J.D. Owens, Fast tridiagonal solvers on the GPU. SIGPLAN Not.45 (2010) 127–136.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.