Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem

Erik Burman; Peter Hansbo

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 3, page 859-874
  • ISSN: 0764-583X

Abstract

top
We extend our results on fictitious domain methods for Poisson’s problem to the case of incompressible elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom, i.e., those outside the physical domain, is obtained thanks to a ghost penalty term for both velocities and pressures. Both inf-sup stable and stabilized velocity pressure pairs are considered.

How to cite

top

Burman, Erik, and Hansbo, Peter. "Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 859-874. <http://eudml.org/doc/273126>.

@article{Burman2014,
abstract = {We extend our results on fictitious domain methods for Poisson’s problem to the case of incompressible elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom, i.e., those outside the physical domain, is obtained thanks to a ghost penalty term for both velocities and pressures. Both inf-sup stable and stabilized velocity pressure pairs are considered.},
author = {Burman, Erik, Hansbo, Peter},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element methods; stabilized methods; penalty methods; Stokes’ problem; fictitious domain; Stokes' problem},
language = {eng},
number = {3},
pages = {859-874},
publisher = {EDP-Sciences},
title = {Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem},
url = {http://eudml.org/doc/273126},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Burman, Erik
AU - Hansbo, Peter
TI - Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 859
EP - 874
AB - We extend our results on fictitious domain methods for Poisson’s problem to the case of incompressible elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom, i.e., those outside the physical domain, is obtained thanks to a ghost penalty term for both velocities and pressures. Both inf-sup stable and stabilized velocity pressure pairs are considered.
LA - eng
KW - finite element methods; stabilized methods; penalty methods; Stokes’ problem; fictitious domain; Stokes' problem
UR - http://eudml.org/doc/273126
ER -

References

top
  1. [1] S. Amdouni, K. Mansouri, Y. Renard, M. Arfaoui and M. Moakher, Numerical convergence and stability of mixed formulation with X-FEM cut-off. Eur. J. Comput. Mech.21 (2012) 160–73. 
  2. [2] S. Amdouni, M. Moakher and Y. Renard, A local projection stabilization of fictitious domain method for elliptic boundary value problems. Preprint, hal.archives-ouvertes.fr: hal-00713115 (2012) Zbl1288.65152MR3131863
  3. [3] Ph. Angot, A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions. C.R. Math. Acad. Sci. Paris348 (2010) 697–702. Zbl1194.35317MR2652501
  4. [4] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equation. Calcolo21 (1984) 337–344. Zbl0593.76039MR799997
  5. [5] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo38 (2001) 173–199. Zbl1008.76036MR1890352
  6. [6] R. Becker, E. Burman and P. Hansbo, A finite element time relaxation method. C.R. Math. Acad. Sci. Paris349 (2011) 353–356. Zbl1305.76052MR2783334
  7. [7] R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Engrg.198 (2009) 3352–3360. Zbl1230.74169MR2571349
  8. [8] R. Becker and P. Hansbo, A simple pressure stabilization method for the Stokes equation. Commun. Numer. Methods Eng.24 (2008) 1421–1430. Zbl1153.76036MR2474694
  9. [9] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math.33 (1979) 211–224. Zbl0423.65058MR549450
  10. [10] S. Bertoluzza, M. Ismail and B. Maury, Analysis of the fully discrete fat boundary method. Numer. Math.118 (2011) 49–77. Zbl1217.65201MR2793902
  11. [11] D. Boffi, F. Brezzi, L. Demkowicz, R. Durán, R. Falk and M. Fortin, Mixed finite elements, compatibility conditions, and applications. Lectures given at the C.I.M.E. Summer School held in Cetraro 2006, edited by Boffi and Lucia Gastaldi. In vol. 1939 Lect. Notes Math. Springer-Verlag, Berlin (2008). Zbl1182.76895MR2459075
  12. [12] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient solutions of elliptic systems (Kiel, 1984), vol. 10 of Notes Numer. Fluid Mech. Vieweg, Braunschweig (1984) 11–19. Zbl0552.76002MR804083
  13. [13] F. Brezzi and R. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal.28 (1991) 581–590. Zbl0731.76042MR1098408
  14. [14] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62 (2012) 328–341. Zbl1316.65099MR2899249
  15. [15] E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg.195 (2006) 2393–2410. Zbl1125.76038MR2207476
  16. [16] E. Burman, Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Part. Differ. Eqs.24 (2008) 127–143. Zbl1139.76029MR2371351
  17. [17] E. Burman, Ghost penalty. C.R. Math. Acad. Sci. Paris348 (2010) 1217–1220. Zbl1204.65142MR2738930
  18. [18] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Functional and Variational Methods. Springer-Verlag, Berlin (1988) Zbl0683.35001MR969367
  19. [19] C. Dohrmann and P. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids46 (2004) 183–201. Zbl1060.76569MR2079895
  20. [20] V. Girault, R. Glowinski and T. Pan, A fictitious–domain method with distributed multiplier for the Stokes problem, in Appl. Nonlinear Anal. Kluwer/Plenum, New York (1999) 159–174. Zbl0954.35127MR1727447
  21. [21] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg.47 (2009) 5537–5552. Zbl1035.65125MR1941489
  22. [22] J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal.191 (2002) 1474–1499. Zbl1205.65322MR2497337
  23. [23] G. Legrain, N. Moës and A. Huerta, Stability of incompressible formulations enriched with X-FEM. Comput. Methods Appl. Mech. Engrg.197 (2008) 1835–1849. Zbl1194.74426MR2417162
  24. [24] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg36 (1971) 9–15. Zbl0229.65079MR341903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.