# Error Estimates for Finite Element Method Solution of the Stokes Problem in the Primitive Variables.

Numerische Mathematik (1979)

- Volume: 33, page 211-224
- ISSN: 0029-599X; 0945-3245/e

## Access Full Article

top## How to cite

topBercovier, M., and Pironneau, O.. "Error Estimates for Finite Element Method Solution of the Stokes Problem in the Primitive Variables.." Numerische Mathematik 33 (1979): 211-224. <http://eudml.org/doc/132638>.

@article{Bercovier1979,

author = {Bercovier, M., Pironneau, O.},

journal = {Numerische Mathematik},

keywords = {error estimates; finite element approximation; Stokes equation; mixed variational principle; Brezzi-type inequality},

pages = {211-224},

title = {Error Estimates for Finite Element Method Solution of the Stokes Problem in the Primitive Variables.},

url = {http://eudml.org/doc/132638},

volume = {33},

year = {1979},

}

TY - JOUR

AU - Bercovier, M.

AU - Pironneau, O.

TI - Error Estimates for Finite Element Method Solution of the Stokes Problem in the Primitive Variables.

JO - Numerische Mathematik

PY - 1979

VL - 33

SP - 211

EP - 224

KW - error estimates; finite element approximation; Stokes equation; mixed variational principle; Brezzi-type inequality

UR - http://eudml.org/doc/132638

ER -

## Citations in EuDML Documents

top- Erik Burman, Peter Hansbo, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem
- V. Ruas, J. H. Carneiro de Araújo, M. A. M. Silva Ramos, Approximation of the three-field Stokes system via optimized quadrilateral finite elements
- Petr Knobloch, Lutz Tobiska, Stabilization methods of bubble type for the ${Q}_{1}/{Q}_{1}$-element applied to the incompressible Navier-Stokes equations
- Richard S. Falk, A Fortin operator for two-dimensional Taylor-Hood elements
- Petr Knobloch, Lutz Tobiska, Stabilization methods of bubble type for the -element applied to the incompressible Navier-Stokes equations
- Jean-Luc Guermond, Some implementations of projection methods for Navier-Stokes equations
- Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao, Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
- O. Goubet, Separation of variables in the Stokes problem application to its finite element multiscale approximation
- R. Verfürth, Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions
- R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.