Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda; Mauro Perego; Alessandro Veneziani

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 2, page 309-334
  • ISSN: 0764-583X

Abstract

top
The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents and in the regions where the upstroke or the late recovery of the action potential is occurring. In this paper we investigate a domain decomposition approach for this problem, where the entire computational domain is suitably split and the two models are solved in different subdomains. Since the mathematical features of the two problems are rather different, the heterogeneous coupling is non trivial. Here we investigate appropriate interface matching conditions for the coupling on non overlapping domains. Moreover, we pursue an Optimized Schwarz approach for the numerical solution of the heterogeneous problem. Convergence of the iterative method is analyzed by means of a Fourier analysis. We investigate the parameters to be selected in the matching radiation-type conditions to accelerate the convergence. Numerical results both in two and three dimensions illustrate the effectiveness of the coupling strategy.

How to cite

top

Gerardo-Giorda, Luca, Perego, Mauro, and Veneziani, Alessandro. "Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.2 (2011): 309-334. <http://eudml.org/doc/273127>.

@article{Gerardo2011,
abstract = {The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents and in the regions where the upstroke or the late recovery of the action potential is occurring. In this paper we investigate a domain decomposition approach for this problem, where the entire computational domain is suitably split and the two models are solved in different subdomains. Since the mathematical features of the two problems are rather different, the heterogeneous coupling is non trivial. Here we investigate appropriate interface matching conditions for the coupling on non overlapping domains. Moreover, we pursue an Optimized Schwarz approach for the numerical solution of the heterogeneous problem. Convergence of the iterative method is analyzed by means of a Fourier analysis. We investigate the parameters to be selected in the matching radiation-type conditions to accelerate the convergence. Numerical results both in two and three dimensions illustrate the effectiveness of the coupling strategy.},
author = {Gerardo-Giorda, Luca, Perego, Mauro, Veneziani, Alessandro},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {computational electrocardiology; optimized Schwarz methods; heterogeneous models},
language = {eng},
number = {2},
pages = {309-334},
publisher = {EDP-Sciences},
title = {Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology},
url = {http://eudml.org/doc/273127},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Gerardo-Giorda, Luca
AU - Perego, Mauro
AU - Veneziani, Alessandro
TI - Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 2
SP - 309
EP - 334
AB - The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents and in the regions where the upstroke or the late recovery of the action potential is occurring. In this paper we investigate a domain decomposition approach for this problem, where the entire computational domain is suitably split and the two models are solved in different subdomains. Since the mathematical features of the two problems are rather different, the heterogeneous coupling is non trivial. Here we investigate appropriate interface matching conditions for the coupling on non overlapping domains. Moreover, we pursue an Optimized Schwarz approach for the numerical solution of the heterogeneous problem. Convergence of the iterative method is analyzed by means of a Fourier analysis. We investigate the parameters to be selected in the matching radiation-type conditions to accelerate the convergence. Numerical results both in two and three dimensions illustrate the effectiveness of the coupling strategy.
LA - eng
KW - computational electrocardiology; optimized Schwarz methods; heterogeneous models
UR - http://eudml.org/doc/273127
ER -

References

top
  1. [1] A. Alonso-Rodriguez and L. Gerardo-Giorda, New non-overlapping domain decomposition methods for the time-harmonic Maxwell system. SIAM J. Sci. Comp.28 (2006) 102–122. Zbl1106.78014MR2219289
  2. [2] M. Bendahmane and K.H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media1 (2006) 185–218. Zbl1179.35162MR2219282
  3. [3] Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal.: Real World Appl. 10 (2009) 458–482. Zbl1154.35370MR2451724
  4. [4] R.H. Clayton and A.V. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol.96 (2008) 19–43. 
  5. [5] R.H. Clayton, O.M. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann and H. Zhang, Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. (2010) DOI: 10.1016/j.pbiomolbio.2010.05.008. 
  6. [6] J.C. Clements, J. Nenonen, P.K.J. Li and M. Horacek, Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng.32 (2004) 984–990. 
  7. [7] P. Colli Franzone and L.F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci.14 (2004) 883–911. Zbl1068.92024MR2069498
  8. [8] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf Eds., Birkhauser (2002) 49–78. Zbl1036.35087MR1944157
  9. [9] P. Colli Franzone, L.F. Pavarino and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosc.197 (2005) 35–66. Zbl1074.92004MR2167484
  10. [10] P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang and L.F. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput.28 (2006) 942–962. Zbl1114.65110MR2240798
  11. [11] V. Dolean and F. Nataf, An Optimized Schwarz Algorithm for the compressible Euler equations, in Domain Decomposition Methods in Science and Engineering, Proceedings of the DD16 Conference, Springer-Verlag (2007) 173–180. Zbl1213.76124MR2334101
  12. [12] V. Dolean, M.J. Gander and L. Gerardo-Giorda, Optimized Schwarz Methods for Maxwell's equations. SIAM J. Sci. Comput.31 (2009) 2193–2213. Zbl1192.78044MR2516149
  13. [13] J.J. Fox, J.L. McHarg and R.F. Gilmour, Ionic mechanism of electrical alternans. Am. J. Physiol. (Heart Circ. Physiol.) 282 (2002) H516–H530. 
  14. [14] M.J. Gander, Optimized Schwarz methods. SIAM J. Num. Anal.44 (2006) 699–731. Zbl1117.65165MR2218966
  15. [15] M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput.24 (2002) 38–60. Zbl1021.65061MR1924414
  16. [16] L. Gerardo-Giorda, L. Mirabella, F. Nobile, M. Perego and A. Veneziani, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys.228 (2009) 3625–3639. Zbl1187.92053MR2511070
  17. [17] J.P. Keener, Direct activation and defibrillation of cardiac tissue. J. Theor. Biol.178 (1996) 313–324. 
  18. [18] J.P. Keener and J. Sneyd, Mathematical Physiology. Springer-Verlag, New York (1998). Zbl1273.92017MR1673204
  19. [19] D.C. Latimer and B.J. Roth, Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans. Biomed. Eng.45 (1998) 1449–1458. 
  20. [20] J. Le Grice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin and P.J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol.) 269 (1995) H571–H582. 
  21. [21] P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, Philadelphia, R. Glowinski, J. Périaux, T.F. Chan and O. Widlund Eds., SIAM (1990). Zbl0704.65090MR1064345
  22. [22] L. Luo and Y. Rudy, A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction. Circ. Res.68 (1991) 1501–1526. 
  23. [23] L. Mirabella, F. Nobile and A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology. Technical Report TR-2009-025, Dept. MathCS, Emory University (2009). Zbl1230.92026
  24. [24] B.F. Nielsen, T.S. Ruud, G.T. Lines and A. Tveito, Optimal monodomain approximation of the bidomain equations. Appl. Math. Comp.184 (2007) 276–290. Zbl1115.92005MR2294845
  25. [25] A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark and W.R. Giles, Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res.82 (1998) 63–81. 
  26. [26] L.F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comp.31 (2008) 420–443. Zbl1185.65179MR2460784
  27. [27] M. Pennacchio and V. Simoncini, Efficient algebraic solution of rection-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math.145 (2002) 49–70. Zbl1006.65102MR1914350
  28. [28] M. Perego and A. Veneziani, An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations. Electronic Transaction on Numerical Analysis35 (2009) 234–256. Zbl1185.92005MR2582815
  29. [29] M. Potse, B. Dubé, J. Richer and A. Vinet, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng.53 (2006) 2425–2435. 
  30. [30] A. Quarteroni and A. Valli, Domain Decompostion Methods for Partial Differential Equations. Oxford University Press, Oxford (1999). Zbl0931.65118MR1857663
  31. [31] A. Quarteroni, L. Formaggia and A. Veneziani, Complex Systems in Biomedicine, in Computational electrocardiology: mathematical and numerical modeling, P. Colli Franzone, L. Pavarino and G. Savaré Eds., Springer, Milan (2006). Zbl1169.92031MR2488001
  32. [32] B. Roth, A comparison of two boundary conditions used with the bidomain model of cardiac tissue. Ann. Biomed. Eng.19 (1991) 669–678. 
  33. [33] S. Scacchi, A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Eng.197 (2008) 4051–4061. Zbl1194.78048MR2458128
  34. [34] B.F. Smith, P.E. Bjørstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996). Zbl0857.65126MR1410757
  35. [35] D. Streeter, Gross morphology and fiber geometry in the heart, in Handbook of Physiology 1 (Sect. 2), R.M. Berne Ed., Williams and Wilnkins (1979) 61–112. 
  36. [36] A. Toselli and O. Widlund, Domain Decomposition Methods. 1st edition, Springer (2004). Zbl1069.65138
  37. [37] N. Trayanova, Defibrillation of the heart: insights into mechanisms from modelling studies. Exp. Physiol.91 (2006) 323–337. 
  38. [38] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal.: Real World Appl. 10 (2009) 849–868. Zbl1167.35403MR2474265
  39. [39] E.J. Vigmond, F. Aguel and N.A. Trayanova, Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng.49 (2002) 1260–1269. 
  40. [40] E.J. Vigmond, R. Weber dos Santos, A.J. Prassl, M. Deo and G. Plank, Solvers for the caridac bidomain equations. Prog. Biophys. Mol. Biol. 96 (2008) 3–18. 
  41. [41] R. Weber dos Santos, G. Planck, S. Bauer and E.J. Vigmond, Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51 (2004) 1960–1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.