A Multiscale Enrichment Procedure for Nonlinear Monotone Operators

Y. Efendiev; J. Galvis; M. Presho; J. Zhou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 2, page 475-491
  • ISSN: 0764-583X

Abstract

top
In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461–1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.

How to cite

top

Efendiev, Y., et al. "A Multiscale Enrichment Procedure for Nonlinear Monotone Operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.2 (2014): 475-491. <http://eudml.org/doc/273142>.

@article{Efendiev2014,
abstract = {In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461–1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.},
author = {Efendiev, Y., Galvis, J., Presho, M., Zhou, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {generalized multiscale finite element method; nonlinear equations; high-contrast; domain decomposition; nonlinear elliptic problems; nonlinear eigenvalue problem; numerical example},
language = {eng},
number = {2},
pages = {475-491},
publisher = {EDP-Sciences},
title = {A Multiscale Enrichment Procedure for Nonlinear Monotone Operators},
url = {http://eudml.org/doc/273142},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Efendiev, Y.
AU - Galvis, J.
AU - Presho, M.
AU - Zhou, J.
TI - A Multiscale Enrichment Procedure for Nonlinear Monotone Operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 2
SP - 475
EP - 491
AB - In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461–1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.
LA - eng
KW - generalized multiscale finite element method; nonlinear equations; high-contrast; domain decomposition; nonlinear elliptic problems; nonlinear eigenvalue problem; numerical example
UR - http://eudml.org/doc/273142
ER -

References

top
  1. [1] J. Aarnes, S. Krogstad and K. Lie, A hierarchical multiscale method for two-phase flow based on upon mixed finite elements and nonuniform coarse grids. SIAM Multiscale Model. Simul.5 (2006) 337–363. Zbl1124.76022MR2247754
  2. [2] T. Arbogast, G. Pencheva, M. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul.6 (2007) 319–346. Zbl1322.76039MR2306414
  3. [3] X. Cai and D. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput.24 (2002) 183–200. Zbl1015.65058MR1924420
  4. [4] X. Chen and Y. Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J.57 (2008) 627–658. Zbl1153.35056MR2414330
  5. [5] M. Dryja and W. Hackbusch, On the nonlinear domain decomposition method. BIT37 (1997) 296–311. Zbl0891.65126MR1450962
  6. [6] Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Comput. Method Appl. Math.12 (2012) 1–22. Zbl1284.65153MR3033239
  7. [7] Y. Efendiev, J. Galvis and T. Hou, Generalized Multiscale Finite Element Method. J. Comput. Phys. (2013) 116–135. MR3094911
  8. [8] Y. Efendiev, J. Galvis, G. Li and M. Presho, Generalized Multiscale Finite Element Methods. Oversampling strategies. To appear in Int. J. Multiscale Comput. Engrg. 
  9. [9] Y. Efendiev, J. Galvis and X. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys.230 (2011) 937–955. Zbl05867068MR2753343
  10. [10] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM Multiscale Model. Simul.8 (2010) 1461–1483. Zbl1206.76042MR2718268
  11. [11] Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications. Springer, New York (2009). Zbl1163.65080MR2477579
  12. [12] T. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys.134 (1997) 169–189. Zbl0880.73065MR1455261
  13. [13] T. Hughes, G. Feijóo, L. Mazzei and J. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg.166 (1998) 3–24. Zbl1017.65525MR1660141
  14. [14] P. Jenny, S. Lee and H. Tchelepi, Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys.187 (2003) 47–67. Zbl1047.76538
  15. [15] T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. BIT37 (1997) 296–311. Zbl1147.65101
  16. [16] P. Solin and S. Giani, An iterative adaptive finite element method for elliptic eigenvalue problems. J. Comput. Appl. Math.236 (2012) 4582–4599 Zbl1259.65167MR2946392
  17. [17] X. Tai and M. Espedal, Rate of convergence of some space decomposition methods for linear and nonlinear problems. Springer-Verlag, Berlin-Heidelburg (2008). Zbl0915.65063
  18. [18] J. Xu and L. Zikatanov, On an energy minimizing basis for algebraic multigrid methods. Comput. Visual Sci.7 (2004) 121–127. Zbl1077.65130MR2097099
  19. [19] X. Yao and J. Zhou, Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogeneous cases. SIAM J. Sci. Comput. 29 (2007) 1355–1374. Zbl1156.65055MR2341791
  20. [20] X. Yao and J. Zhou, Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases. SIAM J. Sci. Comp. 30 (2008) 937–956. Zbl1183.65140MR2385893
  21. [21] E. Zeidler, Nonlinear Functional Analysis and Its Applications III. Springer-Verlag, New York (1985). Zbl0583.47051MR768749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.