Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions

Karl Kunisch; Marcus Wagner

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 4, page 1077-1106
  • ISSN: 0764-583X

Abstract

top
We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.

How to cite

top

Kunisch, Karl, and Wagner, Marcus. "Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.4 (2013): 1077-1106. <http://eudml.org/doc/273184>.

@article{Kunisch2013,
abstract = {We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.},
author = {Kunisch, Karl, Wagner, Marcus},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {PDE constrained optimization; bidomain equations; two-variable ionic models; weak local minimizer; existence theorem; necessary optimality conditions; pointwise minimum condition; bidomain system; existence results},
language = {eng},
number = {4},
pages = {1077-1106},
publisher = {EDP-Sciences},
title = {Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions},
url = {http://eudml.org/doc/273184},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Kunisch, Karl
AU - Wagner, Marcus
TI - Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 4
SP - 1077
EP - 1106
AB - We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.
LA - eng
KW - PDE constrained optimization; bidomain equations; two-variable ionic models; weak local minimizer; existence theorem; necessary optimality conditions; pointwise minimum condition; bidomain system; existence results
UR - http://eudml.org/doc/273184
ER -

References

top
  1. [1] B. Ainseba, M. Bendahmane and R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl.388 (2012) 231–247. Zbl1234.49004MR2869743
  2. [2] R.R. Aliev and A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293–301. 
  3. [3] M.S. Berger, Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977). Zbl0368.47001MR488101
  4. [4] Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458–482. Zbl1154.35370MR2451724
  5. [5] A.J.V. Brandaõ, E. Fernández-Cara, P.M.D. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh–Nagumo equation. Electron. J. Differ. Eq. (2008) 1–20. Zbl1173.35355
  6. [6] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, New York (2008). Zbl1140.49001MR2361288
  7. [7] L.C. Evans, Partial Differential Equations. Amer. Math. Soc. Providence (1998). MR1625845
  8. [8] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J.1 (1961) 445–466. 
  9. [9] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). Zbl1156.49002MR2441683
  10. [10] K. Kunisch, C. Nagaiah and M. Wagner, A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257–269. MR2972251
  11. [11] K. Kunisch and M. Wagner, Optimal control of the bidomain system (I): The monodomain approximation with the Rogers–McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 1525–1550. Zbl1256.49009MR2890991
  12. [12] K. Kunisch and M. Wagner, Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011–008 (to appear: Ann. Mat. Pura Appl.) Zbl1280.49005
  13. [13] S. Muzdeka and E. Barbieri, Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416–7421. 
  14. [14] C. Nagaiah and K. Kunisch, Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math.61 (2011) 53–65. Zbl1201.92026MR2735255
  15. [15] C. Nagaiah, K. Kunisch and G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl.49 (2011) 149–178. Zbl1226.49024MR2794304
  16. [16] C. Nagaiah, K. Kunisch and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011–020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2) Zbl1319.92021MR3071161
  17. [17] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers50 (1962) 2061–2070. 
  18. [18] J.M. Rogers and A.D. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg.41 (1994) 743–757. 
  19. [19] S. Rolewicz, Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976). Zbl0333.49002MR442779
  20. [20] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Berlin (2006). Zbl1182.92020MR2258456
  21. [21] L. Tung, A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978). 
  22. [22] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849–868. Zbl1167.35403MR2474265
  23. [23] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972). Zbl0253.49001MR372708
  24. [24] K. Yosida, Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980). MR617913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.