Page 1 Next

Displaying 1 – 20 of 53

Showing per page

A comparison of coupled and uncoupled solvers for the cardiac Bidomain model

P. Colli Franzone, L. F. Pavarino, S. Scacchi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this work is to compare a new uncoupled solver for the cardiac Bidomain model with a usual coupled solver. The Bidomain model describes the bioelectric activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE. This system models at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution equation is...

A mathematical model describing the thyroid-pituitary axis with time delays in hormone transportation

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2006)

Applications of Mathematics

In the present paper, a mathematical model, originally proposed by Danziger and Elmergreen and describing the thyroid-pituitary homeostatic mechanism, is modified and analyzed for its physiological and clinical significance. The influence of different system parameters on the stability behavior of the system is discussed. The transportation delays of different hormones in the bloodstream, both in the discrete and distributed forms, are considered. Delayed models are analyzed regarding the stability...

A model of cardiac tissue as an excitable medium with two interacting pacemakers having refractory time

Alexander Loskutov, Sergei Rybalko, Ekaterina Zhuchkova (2003)

Banach Center Publications

A quite general model of the nonlinear interaction of two impulse systems describing some types of cardiac arrhythmias is developed. Taking into account a refractory time the phase locking phenomena are investigated. Effects of the tongue splitting and their interweaving in the parametric space are found. The results obtained allow us to predict the behavior of excitable systems with two pacemakers depending on the type and intensity of their interaction and the initial phase.

Bifurcations in a modulation equation for alternans in a cardiac fiber

Shu Dai, David G. Schaeffer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

While alternans in a single cardiac cell appears through a simple period-doubling bifurcation, in extended tissue the exact nature of the bifurcation is unclear. In particular, the phase of alternans can exhibit wave-like spatial dependence, either stationary or travelling, which is known as discordant alternans. We study these phenomena in simple cardiac models through a modulation equation proposed by Echebarria-Karma. As shown in our previous paper, the zero solution of their equation may lose...

Formalisation and methods of analysis of the fast xenobiotic mass transfer in the body

Volodymir G. Zinkovsky, Olga V. Zhuk, Michał Teodorczyk, Natalia Karpinchik (2009)

Applicationes Mathematicae

A novel discrimination and regression method for a quantitative determination of the relative efficiency of "fast" distribution processes of xenobiotics is discussed. An integral model-independent method for estimation of equilibrium tissue-to-plasma partition ratios is proposed.

Global stability of steady solutions for a model in virus dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Global Stability of Steady Solutions for a Model in Virus Dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics

E. Afenya, S. Mundle (2010)

Mathematical Modelling of Natural Phenomena

Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. The lingering controversies related to various diseases are highlighted. A simple biomathematical model of bone marrow - peripheral blood dynamics in the normal state is proposed and used to investigate cell behavior in normal hematopoiesis from a mathematical viewpoint. Analysis of the steady state and properties of the model are used to make postulations about the...

Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling

G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans (2012)

Mathematical Modelling of Natural Phenomena

HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...

Currently displaying 1 – 20 of 53

Page 1 Next