# Small-stencil 3D schemes for diffusive flows in porous media

Robert Eymard; Cindy Guichard; Raphaèle Herbin

- Volume: 46, Issue: 2, page 265-290
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topEymard, Robert, Guichard, Cindy, and Herbin, Raphaèle. "Small-stencil 3D schemes for diffusive flows in porous media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.2 (2012): 265-290. <http://eudml.org/doc/273188>.

@article{Eymard2012,

abstract = {In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.},

author = {Eymard, Robert, Guichard, Cindy, Herbin, Raphaèle},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {porous media; diffusion operator; anisotropy; non conforming meshes},

language = {eng},

number = {2},

pages = {265-290},

publisher = {EDP-Sciences},

title = {Small-stencil 3D schemes for diffusive flows in porous media},

url = {http://eudml.org/doc/273188},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Eymard, Robert

AU - Guichard, Cindy

AU - Herbin, Raphaèle

TI - Small-stencil 3D schemes for diffusive flows in porous media

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2012

PB - EDP-Sciences

VL - 46

IS - 2

SP - 265

EP - 290

AB - In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.

LA - eng

KW - porous media; diffusion operator; anisotropy; non conforming meshes

UR - http://eudml.org/doc/273188

ER -

## References

top- [1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. Locally conservative numerical methods for flow in porous media. Zbl1094.76550MR1956024
- [2] I. Aavatsmark and R. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3D grids. SPE J.8 (2003) 41–48.
- [3] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys.127 (1996) 2–14. Zbl0859.76048
- [4] I. Aavatsmark, G. Eigestad, B. Heimsund, B. Mallison, J. Nordbotten and E. Oian, A new finite-volume approach to efficient discretization on challenging grids. SPE J.15 (2010) 658–669.
- [5] L. Agelas, D.A. Di Pietro and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry, in Finite volumes for complex applications V. ISTE, London (2008) 35–51. MR2441445
- [6] L. Agelas, R. Eymard and R. Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. C. R. Math. Acad. Sci. Paris347 (2009) 673–676. Zbl1166.65051MR2537448
- [7] B. Andreianov, M. Bendahmane and K. Karlsen, A gradient reconstruction formula for finite-volume schemes and discrete duality, in Finite volumes for complex applications V. ISTE, London (2008) 161–168. MR2451403
- [8] B. Andreianov, M. Bendahmane, K.H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterog. Media6 (2011) 195–240. Zbl1328.65190MR2806073
- [9] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal.46 (2008) 3032–3070. Zbl1180.35533MR2439501
- [10] F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2008) 277–295. Zbl1177.65164MR2512497
- [11] Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739. Zbl1243.35061MR2831032
- [12] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. Zbl0937.65116MR1713235
- [13] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, 2D/3D discrete duality finite volume scheme (DDFV) applied to ECG simulation. A DDFV scheme for anisotropic and heterogeneous elliptic equations, application to a bio-mathematics problem: electrocardiogram simulation, in Finite volumes for complex applications V. ISTE, London (2008) 313–320. MR2451422
- [14] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009) 24. MR2500950
- [15] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. Zbl1086.65108MR2195910
- [16] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci.20 (2010) 265–295. Zbl1191.65142MR2649153
- [17] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). Zbl1059.65103MR2050138
- [18] R. Eymard, T. Gallouët and P. Joly, Hybrid finite element techniques for oil recovery simulation. Comput. Methods Appl. Mech. Eng.74 (1989) 83–98. Zbl0687.76101MR1017750
- [19] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000) 713–1020. Zbl0981.65095MR1804748
- [20] R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris344 (2007) 403–406. Zbl1112.65120MR2310678
- [21] R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. see also http://hal.archives-ouvertes.fr/. Zbl1202.65144MR2727814
- [22] R. Eymard, C. Guichard, R. Herbin and R. Masson, Multiphase flow in porous media using the VAG scheme, in Finite Volumes for Complex Applications VI – Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 409–417. Zbl1246.76085MR2882317
- [23] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Kloefkorn and G. Manzini, 3D benchmark on discretization schemes for anisotropic diffusion problem on general grids, in Finite Volumes for Complex Applications VI – Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 95–130.
- [24] I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng.100 (1992) 275–290. Zbl0761.76068MR1187634
- [25] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids for anisotropic heterogeneous diffusion problems, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. Wiley (2008) 659–692. Zbl1246.76053MR2451465
- [26] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng.192 (2003) 1939–1959. Zbl1037.65118MR1980752
- [27] F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Eng.196 (2007) 2497–2526. Zbl1173.76362MR2319051
- [28] F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys.228 (2009) 5763–5786. Zbl1168.76340MR2542915
- [29] G. Strang, Variational crimes in the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md. 1972). Academic Press, New York (1972) 689–710. Zbl0264.65068MR413554

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.