Small-stencil 3D schemes for diffusive flows in porous media

Robert Eymard; Cindy Guichard; Raphaèle Herbin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2012)

  • Volume: 46, Issue: 2, page 265-290
  • ISSN: 0764-583X

Abstract

top
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.

How to cite

top

Eymard, Robert, Guichard, Cindy, and Herbin, Raphaèle. "Small-stencil 3D schemes for diffusive flows in porous media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.2 (2012): 265-290. <http://eudml.org/doc/273188>.

@article{Eymard2012,
abstract = {In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.},
author = {Eymard, Robert, Guichard, Cindy, Herbin, Raphaèle},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {porous media; diffusion operator; anisotropy; non conforming meshes},
language = {eng},
number = {2},
pages = {265-290},
publisher = {EDP-Sciences},
title = {Small-stencil 3D schemes for diffusive flows in porous media},
url = {http://eudml.org/doc/273188},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Eymard, Robert
AU - Guichard, Cindy
AU - Herbin, Raphaèle
TI - Small-stencil 3D schemes for diffusive flows in porous media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 2
SP - 265
EP - 290
AB - In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
LA - eng
KW - porous media; diffusion operator; anisotropy; non conforming meshes
UR - http://eudml.org/doc/273188
ER -

References

top
  1. [1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. Locally conservative numerical methods for flow in porous media. Zbl1094.76550MR1956024
  2. [2] I. Aavatsmark and R. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3D grids. SPE J.8 (2003) 41–48. 
  3. [3] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys.127 (1996) 2–14. Zbl0859.76048
  4. [4] I. Aavatsmark, G. Eigestad, B. Heimsund, B. Mallison, J. Nordbotten and E. Oian, A new finite-volume approach to efficient discretization on challenging grids. SPE J.15 (2010) 658–669. 
  5. [5] L. Agelas, D.A. Di Pietro and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry, in Finite volumes for complex applications V. ISTE, London (2008) 35–51. MR2441445
  6. [6] L. Agelas, R. Eymard and R. Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. C. R. Math. Acad. Sci. Paris347 (2009) 673–676. Zbl1166.65051MR2537448
  7. [7] B. Andreianov, M. Bendahmane and K. Karlsen, A gradient reconstruction formula for finite-volume schemes and discrete duality, in Finite volumes for complex applications V. ISTE, London (2008) 161–168. MR2451403
  8. [8] B. Andreianov, M. Bendahmane, K.H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterog. Media6 (2011) 195–240. Zbl1328.65190MR2806073
  9. [9] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal.46 (2008) 3032–3070. Zbl1180.35533MR2439501
  10. [10] F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2008) 277–295. Zbl1177.65164MR2512497
  11. [11] Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739. Zbl1243.35061MR2831032
  12. [12] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. Zbl0937.65116MR1713235
  13. [13] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, 2D/3D discrete duality finite volume scheme (DDFV) applied to ECG simulation. A DDFV scheme for anisotropic and heterogeneous elliptic equations, application to a bio-mathematics problem: electrocardiogram simulation, in Finite volumes for complex applications V. ISTE, London (2008) 313–320. MR2451422
  14. [14] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009) 24. MR2500950
  15. [15] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. Zbl1086.65108MR2195910
  16. [16] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci.20 (2010) 265–295. Zbl1191.65142MR2649153
  17. [17] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). Zbl1059.65103MR2050138
  18. [18] R. Eymard, T. Gallouët and P. Joly, Hybrid finite element techniques for oil recovery simulation. Comput. Methods Appl. Mech. Eng.74 (1989) 83–98. Zbl0687.76101MR1017750
  19. [19] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000) 713–1020. Zbl0981.65095MR1804748
  20. [20] R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris344 (2007) 403–406. Zbl1112.65120MR2310678
  21. [21] R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. see also http://hal.archives-ouvertes.fr/. Zbl1202.65144MR2727814
  22. [22] R. Eymard, C. Guichard, R. Herbin and R. Masson, Multiphase flow in porous media using the VAG scheme, in Finite Volumes for Complex Applications VI – Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 409–417. Zbl1246.76085MR2882317
  23. [23] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Kloefkorn and G. Manzini, 3D benchmark on discretization schemes for anisotropic diffusion problem on general grids, in Finite Volumes for Complex Applications VI – Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 95–130. 
  24. [24] I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng.100 (1992) 275–290. Zbl0761.76068MR1187634
  25. [25] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids for anisotropic heterogeneous diffusion problems, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. Wiley (2008) 659–692. Zbl1246.76053MR2451465
  26. [26] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng.192 (2003) 1939–1959. Zbl1037.65118MR1980752
  27. [27] F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Eng.196 (2007) 2497–2526. Zbl1173.76362MR2319051
  28. [28] F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys.228 (2009) 5763–5786. Zbl1168.76340MR2542915
  29. [29] G. Strang, Variational crimes in the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md. 1972). Academic Press, New York (1972) 689–710. Zbl0264.65068MR413554

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.