Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2012)

  • Volume: 46, Issue: 1, page 207-237
  • ISSN: 0764-583X

Abstract

top
We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations in view of clinical applications.

How to cite

top

Benzekry, Sébastien. "Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.1 (2012): 207-237. <http://eudml.org/doc/273248>.

@article{Benzekry2012,
abstract = {We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations in view of clinical applications.},
author = {Benzekry, Sébastien},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {anticancer therapy modelling; angiogenesis; structured population dynamics; lagrangian scheme; Lagrangian scheme},
language = {eng},
number = {1},
pages = {207-237},
publisher = {EDP-Sciences},
title = {Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers},
url = {http://eudml.org/doc/273248},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Benzekry, Sébastien
TI - Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 1
SP - 207
EP - 237
AB - We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations in view of clinical applications.
LA - eng
KW - anticancer therapy modelling; angiogenesis; structured population dynamics; lagrangian scheme; Lagrangian scheme
UR - http://eudml.org/doc/273248
ER -

References

top
  1. [1] O. Angulo and J.C. Lopez-Marcos, Numerical schemes for size-structured population equations. Math. Biosci.157 (1999) 169–188. MR1686473
  2. [2] D. Barbolosi, A. Benabdallah, F. Hubert and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumours. Math. Biosci.218 (2009) 1–14. Zbl1157.92020MR2501837
  3. [3] D. Barbolosi, C. Faivre and S. Benzekry, Mathematical modeling of MTD and metronomic temozolomide, 2nd Workshop on Metronomic Anti-Angiogenic Chemotherapy in Paediatric Oncology (2010). 
  4. [4] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport. Ann. Sci. Éc. Norm. Supér. 3 (1970) 185–233. Zbl0202.36903MR274925
  5. [5] R. Beals and V. Protopopescu, Abstract time-dependent transport equations. J. Math. Anal. Appl.2 (1987) 370-405. Zbl0657.45007MR872231
  6. [6] D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK–PD model. Comput. Biol. Med.31 (2001) 157–172. 
  7. [7] S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis, J. Evol. Equ.11 (2011) 187–213. Zbl1252.35126MR2780578
  8. [8] S. Benzekry, Passing to the limit 2D-1D in a model for metastatic growth, to appear in J. Biol. Dyn., doi:10.1080/17513758.2011.568071. Zbl1273.92025MR2928368
  9. [9] F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J. Boissel, E. Grenier and J. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol.260 (2009) 545–562. MR2973110
  10. [10] F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation. Differential Integral Equations18 (2005) 891–934. Zbl1212.35049MR2150445
  11. [11] A. Devys, T. Goudon and P. Laffitte, A model describing the growth and the size distribution of multiple metastatic tumours. Discret. Contin. Dyn. Syst. Ser. B12 (2009) 731–767. Zbl1195.35054MR2552072
  12. [12] A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191 (2004) 159–184. Zbl1050.92039MR2090896
  13. [13] A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumours. Math. Biosci.222 (2009) 13–26. Zbl1176.92033MR2597086
  14. [14] M. Doumic, Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom.2 (2007) 121–152. Zbl06543005MR2455395
  15. [15] J.M.L Ebos, C.R. Lee, W. Cruz-Munoz, G.A. Bjarnason, J.G. Christensen and R.S. Kerbel, Accelerated metastasis after short-term treatment with a potent inhibitor of tumour angiogenesis. Cancer Cell15 (2009) 232–239. 
  16. [16] J. Folkman, Antiangiogenesis: new concept for therapy of solid tumours. Ann. Surg. 175 (1972) 
  17. [17] P. Hahnfeldt, D. Panigraphy, J. Folkman and L. Hlatky, Tumour development under angiogenic signaling: a dynamical theory of tumour growth, treatment, response and postvascular dormancy. Cancer Res.59 (1999) 4770–4775. 
  18. [18] P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term tumour burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol.220 (2003) 545–554. 
  19. [19] K. Iwata, K. Kawasaki and N. Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumours. J. Theor. Biol.203 (2000) 177–186. 
  20. [20] R.K. Jain, Normalizing tumour vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Med.7 (2001) 987–989. 
  21. [21] F. Lignet, S. Benzekry, F. Billy, B. Cajavec Bernard, O. Saut, M. Tod, P. Girard, G. Freyer, E. Grenier, T. Colin and B. Ribba, Identifying optimal combinations of anti-angiogenesis drugs and chemotherapies using a theoretical model of vascular tumour growth (in preparation). 
  22. [22] M. Paez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Vinals, M. Inoue, G. Bergers, D. Hanahan and O. Casanovas, Antiangiogenic therapy elicits malignant progression of tumours to increased local invasion and distant metastasis. Cancer Cell15 (2009) 220–231. 
  23. [23] B. Perthame, Transport equations in biology. Frontiers in Mathematics, Birkhaüser Verlag, Basel (2007). Zbl1185.92006MR2270822
  24. [24] G.J. Riely et al., Randomized phase II study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. J. Clin. Oncol. (2009) 264–270. 
  25. [25] G.W. Swan, Applications of optimal control theory in biomedicine. Math. Biosci.101 (1990) 237–284. Zbl0702.92007
  26. [26] S.L. Tucker and S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math.48 (1988) 549–591. Zbl0657.92011MR941101
  27. [27] B. You, C. Meille, D. Barbolosi, B. tranchand, J. Guitton, C. Rioufol, A. Iliadis and G. Freyer, A mechanistic model predicting hematopoiesis and tumour growth to optimize docetaxel + epirubicin (ET) administration in metastatic breast cancer (MBC): Phase I trial. J. Clin. Oncol.(Meeting abstracts) 25 (2007) 13013. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.