Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers
- Volume: 46, Issue: 1, page 207-237
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] O. Angulo and J.C. Lopez-Marcos, Numerical schemes for size-structured population equations. Math. Biosci.157 (1999) 169–188. MR1686473
- [2] D. Barbolosi, A. Benabdallah, F. Hubert and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumours. Math. Biosci.218 (2009) 1–14. Zbl1157.92020MR2501837
- [3] D. Barbolosi, C. Faivre and S. Benzekry, Mathematical modeling of MTD and metronomic temozolomide, 2nd Workshop on Metronomic Anti-Angiogenic Chemotherapy in Paediatric Oncology (2010).
- [4] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport. Ann. Sci. Éc. Norm. Supér. 3 (1970) 185–233. Zbl0202.36903MR274925
- [5] R. Beals and V. Protopopescu, Abstract time-dependent transport equations. J. Math. Anal. Appl.2 (1987) 370-405. Zbl0657.45007MR872231
- [6] D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK–PD model. Comput. Biol. Med.31 (2001) 157–172.
- [7] S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis, J. Evol. Equ.11 (2011) 187–213. Zbl1252.35126MR2780578
- [8] S. Benzekry, Passing to the limit 2D-1D in a model for metastatic growth, to appear in J. Biol. Dyn., doi:10.1080/17513758.2011.568071. Zbl1273.92025MR2928368
- [9] F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J. Boissel, E. Grenier and J. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol.260 (2009) 545–562. MR2973110
- [10] F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation. Differential Integral Equations18 (2005) 891–934. Zbl1212.35049MR2150445
- [11] A. Devys, T. Goudon and P. Laffitte, A model describing the growth and the size distribution of multiple metastatic tumours. Discret. Contin. Dyn. Syst. Ser. B12 (2009) 731–767. Zbl1195.35054MR2552072
- [12] A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191 (2004) 159–184. Zbl1050.92039MR2090896
- [13] A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumours. Math. Biosci.222 (2009) 13–26. Zbl1176.92033MR2597086
- [14] M. Doumic, Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom.2 (2007) 121–152. Zbl06543005MR2455395
- [15] J.M.L Ebos, C.R. Lee, W. Cruz-Munoz, G.A. Bjarnason, J.G. Christensen and R.S. Kerbel, Accelerated metastasis after short-term treatment with a potent inhibitor of tumour angiogenesis. Cancer Cell15 (2009) 232–239.
- [16] J. Folkman, Antiangiogenesis: new concept for therapy of solid tumours. Ann. Surg. 175 (1972)
- [17] P. Hahnfeldt, D. Panigraphy, J. Folkman and L. Hlatky, Tumour development under angiogenic signaling: a dynamical theory of tumour growth, treatment, response and postvascular dormancy. Cancer Res.59 (1999) 4770–4775.
- [18] P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term tumour burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol.220 (2003) 545–554.
- [19] K. Iwata, K. Kawasaki and N. Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumours. J. Theor. Biol.203 (2000) 177–186.
- [20] R.K. Jain, Normalizing tumour vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Med.7 (2001) 987–989.
- [21] F. Lignet, S. Benzekry, F. Billy, B. Cajavec Bernard, O. Saut, M. Tod, P. Girard, G. Freyer, E. Grenier, T. Colin and B. Ribba, Identifying optimal combinations of anti-angiogenesis drugs and chemotherapies using a theoretical model of vascular tumour growth (in preparation).
- [22] M. Paez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Vinals, M. Inoue, G. Bergers, D. Hanahan and O. Casanovas, Antiangiogenic therapy elicits malignant progression of tumours to increased local invasion and distant metastasis. Cancer Cell15 (2009) 220–231.
- [23] B. Perthame, Transport equations in biology. Frontiers in Mathematics, Birkhaüser Verlag, Basel (2007). Zbl1185.92006MR2270822
- [24] G.J. Riely et al., Randomized phase II study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. J. Clin. Oncol. (2009) 264–270.
- [25] G.W. Swan, Applications of optimal control theory in biomedicine. Math. Biosci.101 (1990) 237–284. Zbl0702.92007
- [26] S.L. Tucker and S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math.48 (1988) 549–591. Zbl0657.92011MR941101
- [27] B. You, C. Meille, D. Barbolosi, B. tranchand, J. Guitton, C. Rioufol, A. Iliadis and G. Freyer, A mechanistic model predicting hematopoiesis and tumour growth to optimize docetaxel + epirubicin (ET) administration in metastatic breast cancer (MBC): Phase I trial. J. Clin. Oncol.(Meeting abstracts) 25 (2007) 13013.