Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations
- Volume: 46, Issue: 5, page 1225-1246
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMoya, Ludovic. "Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.5 (2012): 1225-1246. <http://eudml.org/doc/273261>.
@article{Moya2012,
abstract = {In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction},
author = {Moya, Ludovic},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction},
language = {eng},
number = {5},
pages = {1225-1246},
publisher = {EDP-Sciences},
title = {Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations},
url = {http://eudml.org/doc/273261},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Moya, Ludovic
TI - Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 5
SP - 1225
EP - 1246
AB - In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction
LA - eng
KW - temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction
UR - http://eudml.org/doc/273261
ER -
References
top- [1] M.A. Botchev and J.G. Verwer, Numerical integration of damped maxwell equations. SIAM J. Sci. Comput.31 (2009) 1322–1346. Zbl1229.78026MR2486832
- [2] A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal.44 (2006) 2198–2226. Zbl05202318MR2263045
- [3] A. Catella, V. Dolean and S. Lanteri, An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn.44 (2008) 1250–1253.
- [4] B. Cockburn, G.E.G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000) Zbl0989.76045MR1842160
- [5] G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time-domain. J. Comput. Phys.217 (2006) 340–363. Zbl1160.78004MR2260605
- [6] J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput.31 (2009) 1985–2014. Zbl1195.65131MR2516141
- [7] V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys.229 (2010) 512–526. Zbl1213.78037MR2565614
- [8] H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod.6 (2009) 193–216. Zbl1158.78329MR2574904
- [9] I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math.234 (2010) 3283–3302. Zbl1160.65022
- [10] L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN 39 (2005) 1149–1176. Zbl1094.78008MR2195908
- [11] M.J. Grote and T. Mitkova, Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math.234 (2010) 3283–3302. Zbl1210.78026MR2665386
- [12] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996). Zbl0729.65051MR1439506
- [13] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002). Zbl0994.65135MR1904823
- [14] J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181 (2002) 186–221. Zbl1014.78016MR1925981
- [15] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008). Zbl1134.65068MR2372235
- [16] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003). Zbl1030.65100MR2002152
- [17] J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002). Zbl0823.65124MR1903357
- [18] G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algorithm53 (2010) 321-342 Zbl1186.65089MR2600933
- [19] R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput.16 (1995) 151–168. Zbl0821.65048MR1311683
- [20] E. Montseny, S. Pernet, X. Ferrires and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys.227 (2008) 6795–6820. Zbl1144.78330MR2435431
- [21] J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341. Zbl0419.65069
- [22] J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math.50 (1986) 57–81. Zbl0625.65107
- [23] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN 40 (2006) 815–841. Zbl1121.78014MR2293248
- [24] M. Remaki, A new finite volume scheme for solving Maxwell’s system. Compel19 (2000) 913-931. Zbl0994.78021
- [25] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A146 (1990) 319–323. MR1059400
- [26] A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model.22 (2009) 77–103. Zbl1156.78012
- [27] J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math.51 (2011) 427–445. Zbl1221.65247MR2806538
- [28] J.G Verwer, Composition methods, Maxwell’s and source term. CWI Technical report (2010); Available at http://oai.cwi.nl/oai/asset/17036/17036A.pdf.
- [29] J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl.431 (2009) 300–317. Zbl1170.78004MR2528933
- [30] J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput.6 (1985) 771–780. Zbl0592.65060MR791198
- [31] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag.14 (1966) 302–307. Zbl1155.78304
- [32] H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A150 (1990) 262–268. MR1078768
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.