Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations

Ludovic Moya

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2012)

  • Volume: 46, Issue: 5, page 1225-1246
  • ISSN: 0764-583X

Abstract

top
In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction

How to cite

top

Moya, Ludovic. "Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.5 (2012): 1225-1246. <http://eudml.org/doc/273261>.

@article{Moya2012,
abstract = {In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction},
author = {Moya, Ludovic},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction},
language = {eng},
number = {5},
pages = {1225-1246},
publisher = {EDP-Sciences},
title = {Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations},
url = {http://eudml.org/doc/273261},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Moya, Ludovic
TI - Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 5
SP - 1225
EP - 1246
AB - In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction
LA - eng
KW - temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction
UR - http://eudml.org/doc/273261
ER -

References

top
  1. [1] M.A. Botchev and J.G. Verwer, Numerical integration of damped maxwell equations. SIAM J. Sci. Comput.31 (2009) 1322–1346. Zbl1229.78026MR2486832
  2. [2] A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal.44 (2006) 2198–2226. Zbl05202318MR2263045
  3. [3] A. Catella, V. Dolean and S. Lanteri, An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn.44 (2008) 1250–1253. 
  4. [4] B. Cockburn, G.E.G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000) Zbl0989.76045MR1842160
  5. [5] G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time-domain. J. Comput. Phys.217 (2006) 340–363. Zbl1160.78004MR2260605
  6. [6] J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput.31 (2009) 1985–2014. Zbl1195.65131MR2516141
  7. [7] V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys.229 (2010) 512–526. Zbl1213.78037MR2565614
  8. [8] H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod.6 (2009) 193–216. Zbl1158.78329MR2574904
  9. [9] I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math.234 (2010) 3283–3302. Zbl1160.65022
  10. [10] L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN 39 (2005) 1149–1176. Zbl1094.78008MR2195908
  11. [11] M.J. Grote and T. Mitkova, Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math.234 (2010) 3283–3302. Zbl1210.78026MR2665386
  12. [12] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996). Zbl0729.65051MR1439506
  13. [13] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002). Zbl0994.65135MR1904823
  14. [14] J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181 (2002) 186–221. Zbl1014.78016MR1925981
  15. [15] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008). Zbl1134.65068MR2372235
  16. [16] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003). Zbl1030.65100MR2002152
  17. [17] J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002). Zbl0823.65124MR1903357
  18. [18] G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algorithm53 (2010) 321-342 Zbl1186.65089MR2600933
  19. [19] R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput.16 (1995) 151–168. Zbl0821.65048MR1311683
  20. [20] E. Montseny, S. Pernet, X. Ferrires and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys.227 (2008) 6795–6820. Zbl1144.78330MR2435431
  21. [21] J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341. Zbl0419.65069
  22. [22] J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math.50 (1986) 57–81. Zbl0625.65107
  23. [23] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN 40 (2006) 815–841. Zbl1121.78014MR2293248
  24. [24] M. Remaki, A new finite volume scheme for solving Maxwell’s system. Compel19 (2000) 913-931. Zbl0994.78021
  25. [25] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A146 (1990) 319–323. MR1059400
  26. [26] A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model.22 (2009) 77–103. Zbl1156.78012
  27. [27] J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math.51 (2011) 427–445. Zbl1221.65247MR2806538
  28. [28] J.G Verwer, Composition methods, Maxwell’s and source term. CWI Technical report (2010); Available at http://oai.cwi.nl/oai/asset/17036/17036A.pdf. 
  29. [29] J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl.431 (2009) 300–317. Zbl1170.78004MR2528933
  30. [30] J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput.6 (1985) 771–780. Zbl0592.65060MR791198
  31. [31] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag.14 (1966) 302–307. Zbl1155.78304
  32. [32] H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A150 (1990) 262–268. MR1078768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.