Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics

Othmar Koch; Christof Neuhauser; Mechthild Thalhammer

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 5, page 1265-1286
  • ISSN: 0764-583X

Abstract

top
In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order p applied to the multi-configuration time-dependent Hartree–Fock (MCTDHF) equations, which are associated with a model reduction for high-dimensional linear Schrödinger equations describing free electrons that interact by Coulomb force. Provided that the analytical solution of the MCTDHF equations constituting a system of coupled linear ordinary differential equations and low-dimensional nonlinear partial differential equations satisfies suitable regularity requirements, convergence of order p − 1 in the H1 Sobolev norm and convergence of order p in the L2 norm is proven. An analogous result follows for the cubic nonlinear Schrödinger equation, which is also illustrated by a numerical experiment.

How to cite

top

Koch, Othmar, Neuhauser, Christof, and Thalhammer, Mechthild. "Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.5 (2013): 1265-1286. <http://eudml.org/doc/273281>.

@article{Koch2013,
abstract = {In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order p applied to the multi-configuration time-dependent Hartree–Fock (MCTDHF) equations, which are associated with a model reduction for high-dimensional linear Schrödinger equations describing free electrons that interact by Coulomb force. Provided that the analytical solution of the MCTDHF equations constituting a system of coupled linear ordinary differential equations and low-dimensional nonlinear partial differential equations satisfies suitable regularity requirements, convergence of order p − 1 in the H1 Sobolev norm and convergence of order p in the L2 norm is proven. An analogous result follows for the cubic nonlinear Schrödinger equation, which is also illustrated by a numerical experiment.},
author = {Koch, Othmar, Neuhauser, Christof, Thalhammer, Mechthild},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear evolution equations; time-dependent nonlinear Schrödinger equations; multi-configuration time-dependent Hartree–Fock (MCTDHF) equations; high-order exponential operator splitting methods; local error expansion; convergence; multi-configuration time-dependent Hartree-Fock (MCTDHF) equations},
language = {eng},
number = {5},
pages = {1265-1286},
publisher = {EDP-Sciences},
title = {Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics},
url = {http://eudml.org/doc/273281},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Koch, Othmar
AU - Neuhauser, Christof
AU - Thalhammer, Mechthild
TI - Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 5
SP - 1265
EP - 1286
AB - In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order p applied to the multi-configuration time-dependent Hartree–Fock (MCTDHF) equations, which are associated with a model reduction for high-dimensional linear Schrödinger equations describing free electrons that interact by Coulomb force. Provided that the analytical solution of the MCTDHF equations constituting a system of coupled linear ordinary differential equations and low-dimensional nonlinear partial differential equations satisfies suitable regularity requirements, convergence of order p − 1 in the H1 Sobolev norm and convergence of order p in the L2 norm is proven. An analogous result follows for the cubic nonlinear Schrödinger equation, which is also illustrated by a numerical experiment.
LA - eng
KW - nonlinear evolution equations; time-dependent nonlinear Schrödinger equations; multi-configuration time-dependent Hartree–Fock (MCTDHF) equations; high-order exponential operator splitting methods; local error expansion; convergence; multi-configuration time-dependent Hartree-Fock (MCTDHF) equations
UR - http://eudml.org/doc/273281
ER -

References

top
  1. [1] J. Abhau and M. Thalhammer, A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations. J. Comput. Phys.231 (2012) 6665–6681. MR2965095
  2. [2] R.A. Adams, Sobolev Spaces. Academic Press, Orlando, Fla. (1975). Zbl1098.46001MR450957
  3. [3] W. Bao, D. Jaksch and P. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys.187 (2003) 318–342. Zbl1028.82501MR1977789
  4. [4] W. Bao and J. Shen, A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates. SIAM J. Sci. Comput.26 (2005) 2010–2028. Zbl1084.35083MR2196586
  5. [5] C. Bardos, I. Catto, N. Mauser and S. Trabelsi, Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition. Appl. Math. Lett.22 (2009) 147–152. Zbl1163.35464MR2482267
  6. [6] C. Bardos, I. Catto, N. Mauser and S. Trabelsi, Setting and analysis of the multi-configuration time-dependent Hartree–Fock equations. Arch. Ration. Mech. Anal.198 (2010) 273–330. Zbl1229.35221MR2679373
  7. [7] M.H. Beck, A. Jäckle, G.A. Worth, and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys. Rep.324 (2000) 1–105. 
  8. [8] M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D42 (1997) 113–129. 
  9. [9] S. Blanes and P.C. Moan, Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math.142 (2002) 313–330. Zbl1001.65078MR1906732
  10. [10] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer Verlag, New York, 2nd edition (2002). Zbl0804.65101MR1894376
  11. [11] I. Burghardt, H.-D. Meyer and L.S. Cederbaum, Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys.111 (1999) 2927–2939. 
  12. [12] J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses – an MCTDHF approach. Phys. Rev. A 71 (2005) 012712. 
  13. [13] M. Caliari, Ch. Neuhauser and M. Thalhammer, High-order time-splitting Hermite and Fourier spectral methods for the Gross–Pitaevskii equation. J. Comput. Phys.228 (2009) 822–832. Zbl1158.65340MR2477790
  14. [14] S. Descombes and M. Thalhammer, An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT Numer. Math.50 (2010) 729–749. Zbl1205.65250MR2739463
  15. [15] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc.26 (1930) 376–385. Zbl56.0751.04JFM56.0751.04
  16. [16] J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). Zbl0013.08702
  17. [17] L. Gauckler, Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal.49 (2011) 1194–1209. Zbl1223.65079MR2813177
  18. [18] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Springer Verlag, Berlin–Heidelberg–New York (2002). Zbl0994.65135MR1904823
  19. [19] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Springer Verlag, Berlin–Heidelberg–New York (1987). Zbl0638.65058MR868663
  20. [20] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. Cambridge Univ. Press, Cambridge (1934). Zbl0634.26008
  21. [21] T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Berlin–Heidelberg–New York (1966). Zbl0435.47001MR203473
  22. [22] T. Kato and H. Kono, time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392 (2004) 533–540. 
  23. [23] M. Kitzler, J. Zanghellini, Ch. Jungreuthmayer, M. Smits, A. Scrinzi and T. Brabec, Ionization dynamics of extended multielectron systems. Phys. Rev. A 70 (2004) 041401(R). 
  24. [24] O. Koch, The variational splitting method for the multi-configuration time-dependent Hartree–Fock equations for atoms. To appear in J. Numer. Anal. Indust. Appl. Math.7 (2012) 1–13. MR2950041
  25. [25] O. Koch, W. Kreuzer and A. Scrinzi, MCTDHF in ultrafast laser dynamics. AURORA TR-2003-29, Inst. Appl. Math. Numer. Anal., Vienna Univ. of Technology, Austria (2003). Available at http://www.othmar-koch.org/research.html. 
  26. [26] O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput.173 (2006) 960–976. Zbl1088.65092MR2207989
  27. [27] O. Koch and C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. M2AN Math. Model. Numer. Anal. 41 (2007) 315–331. Zbl1135.81380MR2339631
  28. [28] O. Koch and C. Lubich, Analysis and time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics. ASC Report 4/2008, Inst. Anal. Sci. Comput. Vienna Univ. of Technology (2008). Zbl1218.81040
  29. [29] O. Koch and C. Lubich, Variational splitting time integration of the MCTDHF equations in electron dynamics. IMA J. Numer. Anal.31 (2011) 379–395. Zbl1218.81040MR2813176
  30. [30] Y. Kwon, D.M. Ceperley and R.M. Martin, Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study. Phys. Rev. B58 (1998) 6800–6806. 
  31. [31] L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford–New York, 3rd edition (1977). Zbl0178.57901
  32. [32] C. Lubich, A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math.48 (2004) 355–368. Zbl1037.81634MR2056923
  33. [33] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lect. Adv. Math. Europ. Math. Soc., Zurich (2008). Zbl1160.81001MR2474331
  34. [34] C. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp.77 (2008) 2141–2153. Zbl1198.65186MR2429878
  35. [35] R. McLachlan and R. Quispel, Splitting methods. Acta Numer.11 (2002) 341–434. Zbl1105.65341MR2009376
  36. [36] H.-D. Meyer, F. Gatti and G.A. Worth, editors. Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim, Berlin (2009). 
  37. [37] H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett.165 (1990) 73–78. 
  38. [38] H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: Propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc.109 (2003) 251–267. 
  39. [39] M. Miklavčič, Applied Functional Analysis and Partial Differential Equations. World Scientific, Singapore (1998). Zbl0913.35002
  40. [40] I. Nagy, R. Diez Muiño, J.I. Juaristi and P.M. Echenique, Spin-resolved pair-distribution functions in an electron gas: A scattering approach based on consistent potentials. Phys. Rev. B 69 (2004) 233105. 
  41. [41] M. Nest and T. Klamroth, Correlated many-electron dynamics: Application to inelastic electron scattering at a metal film. Phys. Rev. A 72 (2005) 012710. 
  42. [42] M. Nest, T. Klamroth and P. Saalfrank, The multiconfiguration time-dependent Hartree–Fock method for quantum chemical calculations. J. Chem. Phys. 122 (2005) 124102. 
  43. [43] C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT Numer. Math.49 (2009) 199–215. Zbl1162.65385MR2486135
  44. [44] V.M. Perez-Garcia and X. Liu, Numerical methods for the simulation of trapped nonlinear Schrödinger systems. Appl. Math. Comput.144 (2003) 215–235. Zbl1024.65084MR1993427
  45. [45] J.C. Slater, Quantum Theory of Molecules and Solids. McGraw–Hill, New York, Toronto, London 1 (1960). Zbl0045.28405
  46. [46] G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.5 (1968) 506–517. Zbl0184.38503MR235754
  47. [47] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Appl. Math. Sci. Springer Verlag, New York (1999). Zbl0928.35157
  48. [48] M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal.46 (2008) 2022–2038. Zbl1170.65061MR2399406
  49. [49] M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal.50 (2012) 3231–3258. Zbl1267.65116MR3022261
  50. [50] S. Trabelsi, Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions. C. R. Acad. Sci. Paris, Ser. I 345 (2007) 145–150. Zbl1120.35077MR2344813
  51. [51] H.F. Trotter, On the product of semi-groups of operators. Proc. Amer. Math. Soc.10 (1959) 545–551. Zbl0099.10401MR108732
  52. [52] J. Zanghellini, M. Kitzler, T. Brabec and A. Scrinzi, Testing the multi-configuration time-dependent Hartree–Fock method. J. Phys. B: At. Mol. Phys. 37 (2004) 763–773. 
  53. [53] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec and A. Scrinzi, An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phy.13 (2003) 1064–1068. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.