Minimal invasion: An optimal L∞ state constraint problem
Christian Clason; Kazufumi Ito; Karl Kunisch
- Volume: 45, Issue: 3, page 505-522
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Pure and Applied Mathematics (Amsterdam) 140. Second edition, Elsevier/Academic Press, Amsterdam (2003). Zbl1098.46001MR2424078
- [2] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. Zbl1042.35002MR1814364
- [3] T. Grund and A. Rösch, Optimal control of a linear elliptic equation with a supremum norm functional. Optim. Methods Softw.15 (2001) 299–329. Zbl1005.49013MR1892589
- [4] M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim.17 (2006) 159–187. Zbl1137.49028MR2219149
- [5] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). Zbl1156.49002MR2441683
- [6] H. Maurer and J. Zowe, First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program.16 (1979) 98–110. Zbl0398.90109MR517762
- [7] U. Prüfert and A. Schiela, The minimization of a maximum-norm functional subject to an elliptic PDE and state constraints. ZAMM89 (2009) 536–551. Zbl1166.49021MR2553754
- [8] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics, Plenum Press, New York (1987). Zbl0655.35002MR1094820