Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation

Cyril Agut; Julien Diaz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 3, page 903-932
  • ISSN: 0764-583X

Abstract

top
We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.

How to cite

top

Agut, Cyril, and Diaz, Julien. "Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.3 (2013): 903-932. <http://eudml.org/doc/273286>.

@article{Agut2013,
abstract = {We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.},
author = {Agut, Cyril, Diaz, Julien},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {discontinuous Galerkin; penalization coefficient; CFL condition; wave equation},
language = {eng},
number = {3},
pages = {903-932},
publisher = {EDP-Sciences},
title = {Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation},
url = {http://eudml.org/doc/273286},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Agut, Cyril
AU - Diaz, Julien
TI - Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 3
SP - 903
EP - 932
AB - We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.
LA - eng
KW - discontinuous Galerkin; penalization coefficient; CFL condition; wave equation
UR - http://eudml.org/doc/273286
ER -

References

top
  1. [1] C. Agut and J. Diaz, Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation. INRIA Res. Report (2010). Zbl1266.65151
  2. [2] M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27 (2006). Zbl1102.76032MR2285764
  3. [3] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal.19 (1982) 742–760. Zbl0482.65060MR664882
  4. [4] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of disconitnuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal.39 (2002) 1749–1779. Zbl1008.65080MR1885715
  5. [5] C. Baldassari, Modélisation et simulation numérique pour la migration terrestre par équation d’ondes. Ph.D. Thesis (2009). 
  6. [6] G. Benitez Alvarez, A.F. Dourado Loula, E.G. Dutrado Carmo and A. Alves Rochinha, A discontinuous finite element formulation for Helmholtz equation. Comput. Methods. Appl. Mech. Engrg.195 (2006) 4018–4035. Zbl1123.65113MR2229833
  7. [7] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001). Zbl0985.65096MR1870851
  8. [8] S. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher-order triangular finite elements with mass-lumping for the wave equation. SIAM J. Numer. Anal.44 (2006) 2408–2431. Zbl1019.65077
  9. [9] S. Cohen, P. Joly and N. Tordjman, Higher-order finite elements with mass-lumping for the 1d wave equation. Finite Elem. Anal. Des.16 (1994) 329–336. Zbl0865.65072MR1286095
  10. [10] M.A. Dablain, The application of high order differencing for the scalar wave equation. Geophys.51 (1986) 54–56. 
  11. [11] J.D. De Basabe and M.K. Sen, Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping. Geophys. J. Int.181 (2010) 577–590. 
  12. [12] Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty galerkin methods. J. Comput. Appl. Math.206 (2007) 843–872. Zbl1141.65078MR2333718
  13. [13] S. Fauqueux, Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d’ondes élastiques en régime transitoire. Ph.D. Thesis (2003). 
  14. [14] J.-C. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Comput. Methods Appl. Sci.16 (2008) 67–93. Zbl1149.65070MR2484685
  15. [15] M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal.44 (2006) 2408–2431. Zbl1129.65065MR2272600
  16. [16] M.J. Grote and D. Schötzau, Convergence analysis of a fully discrete dicontinuous Galerkin method for the wave equation. Preprint No. 2008-04 (2008). 
  17. [17] D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J. Int.139 (1999) 806–822. 
  18. [18] P. Lax and B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. XIII (1960) 217–237. Zbl0152.44802MR120774
  19. [19] G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des.16 (1994) 37–348. Zbl0810.73079MR1286096
  20. [20] K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys.205 (2005) 401–407. Zbl1072.65149
  21. [21] G.R. Shubin and J.B. Bell, A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Statist. Comput.8 (1987) 135–151. Zbl0611.76091MR879407
  22. [22] T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg.192 (2003) 2765–2773. Zbl1038.65116MR1986022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.