A reduced model for Darcy’s problem in networks of fractures
Luca Formaggia; Alessio Fumagalli; Anna Scotti; Paolo Ruffo
- Volume: 48, Issue: 4, page 1089-1116
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.T. Adams, Sobolev Spaces, vol. 65. Pure and Applied Mathematics. Academic Press (1975). Zbl0314.46030
- [2] P.M. Adler and J.-F. Thovert, Fractures and fracture networks. Springer (1999).
- [3] P.M. Adler, J.-F. Thovert and V.V. Mourzenko, Fractured porous media. Oxford University Press (2012). Zbl1266.74002MR3237557
- [4] C. Alboin, J. Jaffré, J.E. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media, in Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), vol. 295. Contemp. Math.. Amer. Math. Soc. Providence, RI (2002) 13–24. Zbl1102.76331MR1911534
- [5] C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres. Domain decomposition for some transmission problems in flow in porous media, vol. 552. Lect. Notes Phys. Springer, Berlin (2000) 22–34. Zbl1010.76050MR1876007
- [6] L. Amir, M. Kern, V. Martin and J.E. Roberts, Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé, in Proc. of JANO 8, 8th Conf. Numer. Anal. Optim. (2005).
- [7] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. Zbl1171.76055MR2512496
- [8] J. Bear, C.-F. Tsang and G. de Marsily, Flow and contaminant transport in fractured rock. Academic Press, San Diego (1993).
- [9] R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Engrg.198 (2009) 3352–3360. Zbl1230.74169MR2571349
- [10] B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources25 (2002) 861–884.
- [11] S. Berrone, S. Pieraccini and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput.35 (2013) 908–935. Zbl1266.65187MR3038026
- [12] S. Berrone, S. Pieraccini and S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35 (2013). Zbl1266.65188MR3038028
- [13] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer (2010). Zbl1220.46002MR2759829
- [14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15. Comput. Math. Springer Verlag, Berlin (1991). Zbl0788.73002MR1115205
- [15] C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. Zbl1271.76322
- [16] A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci. Springer (2004). Zbl1059.65103MR2050138
- [17] B. Faybishenko, P.A. Witherspoon and S.M. Benson, Dynamics of fluids in fractured rock, vol. 122. Geophysical monographs. American geophysical union (2000).
- [18] A. Fumagalli, Numerical Modelling of Flows in Fractured Porous Media by the XFEM Method. Ph.D. thesis, Politecnico di Milano (2012).
- [19] A. Fumagalli and A. Scotti, A numerical method for two-phase ow in fractured porous media with non-matching grids, in vol. 62 of Adv. Water Resources (2013) 454–464. Zbl1273.76398
- [20] A. Fumagalli and A. Scotti, A reduced model for flow and transport in fractured porous media with non-matching grids, Numer. Math. Advanced Applications 2011. Edited by A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley and M.V. Tretyakov. Springer Berlin, Heidelberg (2013) 499–507. Zbl1273.76398
- [21] B. Gong, G. Qin, C. Douglas and S. Yuan, Detailed modeling of the complex fracture network of shale gas reservoirs. SPE Reservoir Evaluation and Engrg. (2011).
- [22] A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg.193 (2004) 3523–3540. Zbl1068.74076MR2075053
- [23] M. Hussein and D. Roussos, Discretizing two-dimensional complex fractured fields for incompressible two-phase flow. Int. J. Numer. Methods Fluids (2009). Zbl05862329
- [24] J. Jaffré, V. Martin and J.E. Roberts, Generalized cell-centered finite volume methods for flow in porous media with faults, in Finite volumes for complex applications III (Porquerolles, 2002). Hermes Sci. Publ., Paris (2002) 343–350. Zbl1177.76231MR2007435
- [25] J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci.4 (2011) 967–973.
- [26] M. Karimi-Fard, L.J. Durlofsky and K. Aziz, An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE J.9 (2004) 227–236.
- [27] V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput.26 (2005) 1667–1691. Zbl1083.76058MR2142590
- [28] H. Mustapha, A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J. Sci. Comput.29 (2007) 1439–1459. Zbl1251.76056MR2341795
- [29] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, vol. 23. Springer Ser. Comput. Math. Springer-Verlag, Berlin (1994). Zbl0803.65088MR1299729
- [30] M. Sahimi, Flow and transport in porous media and fractured rock. Wiley-VCH, Weinheim (2011). Zbl1219.76002