Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy–Forchheimer flow in the fracture
Peter Knabner; Jean E. Roberts
- Volume: 48, Issue: 5, page 1451-1472
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topKnabner, Peter, and Roberts, Jean E.. "Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy–Forchheimer flow in the fracture." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.5 (2014): 1451-1472. <http://eudml.org/doc/273308>.
@article{Knabner2014,
abstract = {We consider a model for flow in a porous medium with a fracture in which the flow in the fracture is governed by the Darcy−Forchheimerlaw while that in the surrounding matrix is governed by Darcy’s law. We give an appropriate mixed, variational formulation and show existence and uniqueness of the solution. To show existence we give an analogous formulation for the model in which the Darcy−Forchheimerlaw is the governing equation throughout the domain. We show existence and uniqueness of the solution and show that the solution for the model with Darcy’s law in the matrix is the weak limit of solutions of the model with the Darcy−Forchheimerlaw in the entire domain when the Forchheimer coefficient in the matrix tends toward zero.},
author = {Knabner, Peter, Roberts, Jean E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {flow in porous media; fractures; Darcy−Forchheimerflow; solvability; regularization; monotone operators; Darcy-Forchheimer flow},
language = {eng},
number = {5},
pages = {1451-1472},
publisher = {EDP-Sciences},
title = {Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy–Forchheimer flow in the fracture},
url = {http://eudml.org/doc/273308},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Knabner, Peter
AU - Roberts, Jean E.
TI - Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy–Forchheimer flow in the fracture
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 5
SP - 1451
EP - 1472
AB - We consider a model for flow in a porous medium with a fracture in which the flow in the fracture is governed by the Darcy−Forchheimerlaw while that in the surrounding matrix is governed by Darcy’s law. We give an appropriate mixed, variational formulation and show existence and uniqueness of the solution. To show existence we give an analogous formulation for the model in which the Darcy−Forchheimerlaw is the governing equation throughout the domain. We show existence and uniqueness of the solution and show that the solution for the model with Darcy’s law in the matrix is the weak limit of solutions of the model with the Darcy−Forchheimerlaw in the entire domain when the Forchheimer coefficient in the matrix tends toward zero.
LA - eng
KW - flow in porous media; fractures; Darcy−Forchheimerflow; solvability; regularization; monotone operators; Darcy-Forchheimer flow
UR - http://eudml.org/doc/273308
ER -
References
top- [1] R. Adams, Sobolev Spaces, vol. 65 of Pure and Appl. Math. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] C. Alboin, J. Jaffré, J. Roberts and C. Serres, Domain decomposition for flow in porous media with fractures, in Proc. of the 11th Int. Conf. on Domain Decomposition Methods in Greenwich, England (1999). Zbl1102.76331
- [3] G. Allaire, Homogenization of the stokes flow in a connected porous medium. Asymptotic Anal.2 (1989) 203–222. Zbl0682.76077MR1020348
- [4] G. Allaire, One-phase newtonian flow, in Homogenization and Porous Media, vol. 6 of Interdisciplinary Appl. Math., edited by U. Hornung. Springer-Verlag, New York (1997) 45–69. MR1434318
- [5] Y. Amirat, Ecoulements en milieu poreux n’obeissant pas a la loi de darcy. RAIRO Modél. Math. Anal. Numér.25 (1991) 273–306. Zbl0727.76106MR1103090
- [6] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. Zbl1171.76055MR2512496
- [7] M. Balhoff, A. Mikelic and M. Wheeler, Polynomial filtration laws for low reynolds number flows through porous media. Transport in Porous Media (2009). MR2592414
- [8] J. Bear, Dynamics of Fluids in Porous Media. American Elsevier Pub. Co., New York (1972). Zbl1191.76001
- [9] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO: Modél. Math. Anal. Numér. 8 (1974) 129–151. Zbl0338.90047MR365287
- [10] P. Fabrie, Regularity of the solution of Darcy−Forchheimer’s equation. Nonlinear Anal., Theory Methods Appl. 13 (1989) 1025–1049. Zbl0719.35070MR1013308
- [11] I. Faille, E. Flauraud, F. Nataf, S. Pegaz-Fiornet, F. Schneider and F. Willien, A new fault model in geological basin modelling, application to finite volume scheme and domain decomposition methods, in Finie Volumes for Complex Appl. III. Edited by R. Herbin and D. Kroner. Hermés Penton Sci. (2002) 543–550. Zbl1055.86001MR2008978
- [12] P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing.45 (1901) 1782–1788.
- [13] N. Frih, J. Roberts and A. Saada, Un modèle darcy-frochheimer pour un écoulement dans un milieu poreux fracturé. ARIMA5 (2006) 129–143.
- [14] N. Frih, J. Roberts and A. Saada, Modeling fractures as interfaces: a model for forchheimer fractures. Comput. Geosci.12 (2008) 91–104. Zbl1138.76062MR2386967
- [15] P. Knabner and G. Summ, Solvability of the mixed formulation for Darcy−Forchheimer flow in porous media. Submitted. Zbl0989.65133
- [16] V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput.26 (2005) 1667–1691. Zbl1083.76058MR2142590
- [17] R. Showalter and F. Morales, The narrow fracture approximation by channeled flow. J. Math. Anal. Appl.365 (2010) 320–331. Zbl1273.76370MR2585104
- [18] G. Summ, Lösbarkeit un Diskretisierung der gemischten Formulierung für Darcy-Frochheimer-Fluss in porösen Medien. Ph.D. thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg (2001).
- [19] L. Tartar, Convergence of the homogenization process, in Non-homogeneous Media and Vibration Theory, vol. 127 of Lect. Notes Phys. Edited by E. Sancez-Palencia. Springer-Verlag (1980).
- [20] E. Zeidler, Nonlinear function anaysis and its applications – Nonlinear monotone operators. Springer-Verlag, Berlin, Heidelberg, New York (1990). Zbl0583.47050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.