Stabilized Galerkin methods for magnetic advection
- Volume: 47, Issue: 6, page 1713-1732
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topHeumann, Holger, and Hiptmair, Ralf. "Stabilized Galerkin methods for magnetic advection." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1713-1732. <http://eudml.org/doc/273309>.
@article{Heumann2013,
abstract = {Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.},
author = {Heumann, Holger, Hiptmair, Ralf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {magnetic advection; lie derivative; Friedrichs system; stabilized Galerkin method; upwinding; edge elements; Lie derivative; edge element; optimal convergence rate},
language = {eng},
number = {6},
pages = {1713-1732},
publisher = {EDP-Sciences},
title = {Stabilized Galerkin methods for magnetic advection},
url = {http://eudml.org/doc/273309},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Heumann, Holger
AU - Hiptmair, Ralf
TI - Stabilized Galerkin methods for magnetic advection
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1713
EP - 1732
AB - Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.
LA - eng
KW - magnetic advection; lie derivative; Friedrichs system; stabilized Galerkin method; upwinding; edge elements; Lie derivative; edge element; optimal convergence rate
UR - http://eudml.org/doc/273309
ER -
References
top- [1] S. Agmon, Lectures on elliptic boundary value problems. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965). Zbl0142.37401MR178246
- [2] M.S. Alnæs, A. Logg and K.-A. Mardal, UFC: a Finite Element Code Generation Interface, Chapt. 16. Springer (2012). MR3075806
- [3] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006) 1–155. Zbl1185.65204MR2269741
- [4] D. Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements. Comput. Meth. Appl. Mech. Eng.196 (2007) 3672–3681. Zbl1173.65349MR2339993
- [5] D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput.69 (2000) 121–140. Zbl0938.65126MR1642801
- [6] A. Bossavit, Extrusion, contraction: Their discretization via Whitney forms. COMPEL22 (2004) 470–480. Zbl1161.76602MR1999436
- [7] F. Brezzi, L.D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Mod. Meth. Appl. Sci.14 (2004) 1893–1903. Zbl1070.65117MR2108234
- [8] P. Castillo, B. Cockburn and I. Perugi and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. Zbl0987.65111MR1813251
- [9] M. Clemens, M. Wilke and T. Weiland, Advanced FI2TD algorithms for transient eddy current problems. COMPEL20 (2001) 365–379. Zbl0986.78025
- [10] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. Zbl1122.65111MR2218968
- [11] R.S. Falk and G.R. Richter, Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36 (1999) 935–952 (electronic). Zbl0923.65065MR1688992
- [12] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math.11 (1958) 333–418. Zbl0083.31802MR100718
- [13] F.G. Fuchs, K.H. Karlsen, S. Mishra and N.H. Risebro, Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43 (2009) 825–852. Zbl1177.78057MR2559735
- [14] F. Henrotte, H. Heumann, E. Lange and K. Haymeyer, Upwind 3-d vector potential formulation for electromagnetic braking simulations. IEEE Trans. Magn.46 (2010) 2835–2838.
- [15] H. Heumann, Eulerian and Semi-Lagrangian Methods for Advection-Diffusion of Differential Forms, Ph.D. thesis, ETH Zürich, Switzerland (2011). Zbl1211.65126
- [16] H. Heumann and R. Hiptmair, Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete Contin. Dyn. Syst.29 (2011) 1471–1495. Zbl1211.65126MR2773194
- [17] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11237–339 (2002). Zbl1123.78320MR2009375
- [18] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math.100 (2005) 485–518. Zbl1071.65155MR2194528
- [19] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case. ESAIM: M2AN 39 (2005) 727–753. Zbl1087.65106MR2165677
- [20] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal.42 (2004) 434–459. Zbl1084.65115MR2051073
- [21] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: non-stabilized formulation. J. Sci. Comput. 22/23 (2005) 315–346. Zbl1091.78017MR2142200
- [22] P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal.39 (2002) 2133–2163. Zbl1015.65067MR1897953
- [23] T.J.R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In Finite Element Methods for Convection Dominated Flows, vol. 34 of AMD, Amer. Soc. Mech. Engrg. New York (1979) 19–35. Zbl0423.76067MR571679
- [24] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173–189. Zbl0697.76100MR1002621
- [25] M. Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. Ph.D. thesis, University of Oxford, England (2005).
- [26] M. Jensen, On the discontinuous Galerkin method for Friedrichs systems in graph spaces. In Large-scale scientific computing. Lecture Notes in Comput. Sci., vol. 3743. Springer, Berlin (2006) 94–101. Zbl1142.65445MR2246820
- [27] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399 (electronic). Zbl1058.65120MR2034620
- [28] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Proc. Sympos., Math. Res. Center, Univ. of Wisconsin-Madison vol. 33. Academic Press, New York (1974) 89–123. Zbl0341.65076MR658142
- [29] A. Logg, G.N. Wells and J. Hake, DOLFIN: a C++/Python Finite Element Library, Chapt. 10. Springer (2012). MR3075806
- [30] P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. Marsden and M. Desbrun, Discrete Lie advection of differential forms. Foundations of Computational Mathematics11 (2011) 131–149. Zbl1222.35010MR2776394
- [31] J.-C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341. Zbl0419.65069MR592160
- [32] J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math.50 (1986) 57–81. Zbl0625.65107MR864305
- [33] T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal.28 (1991) 133–140. Zbl0729.65085MR1083327
- [34] W.H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973).
- [35] G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput.50 (1988) 75–88. Zbl0643.65059MR917819
- [36] H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems, volume 24 of Springer Series in Computational Mathematics. 2nd edition. Springer-Verlag, Berlin (2008). Zbl1155.65087MR2454024
- [37] G. Zhou, How accurate is the streamline diffusion finite element method? Math. Comput.66 (1997) 31–44. Zbl0854.65094MR1370859
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.