Stabilized Galerkin methods for magnetic advection

Holger Heumann; Ralf Hiptmair

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 6, page 1713-1732
  • ISSN: 0764-583X

Abstract

top
Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.

How to cite

top

Heumann, Holger, and Hiptmair, Ralf. "Stabilized Galerkin methods for magnetic advection." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1713-1732. <http://eudml.org/doc/273309>.

@article{Heumann2013,
abstract = {Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.},
author = {Heumann, Holger, Hiptmair, Ralf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {magnetic advection; lie derivative; Friedrichs system; stabilized Galerkin method; upwinding; edge elements; Lie derivative; edge element; optimal convergence rate},
language = {eng},
number = {6},
pages = {1713-1732},
publisher = {EDP-Sciences},
title = {Stabilized Galerkin methods for magnetic advection},
url = {http://eudml.org/doc/273309},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Heumann, Holger
AU - Hiptmair, Ralf
TI - Stabilized Galerkin methods for magnetic advection
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1713
EP - 1732
AB - Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.
LA - eng
KW - magnetic advection; lie derivative; Friedrichs system; stabilized Galerkin method; upwinding; edge elements; Lie derivative; edge element; optimal convergence rate
UR - http://eudml.org/doc/273309
ER -

References

top
  1. [1] S. Agmon, Lectures on elliptic boundary value problems. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965). Zbl0142.37401MR178246
  2. [2] M.S. Alnæs, A. Logg and K.-A. Mardal, UFC: a Finite Element Code Generation Interface, Chapt. 16. Springer (2012). MR3075806
  3. [3] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006) 1–155. Zbl1185.65204MR2269741
  4. [4] D. Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements. Comput. Meth. Appl. Mech. Eng.196 (2007) 3672–3681. Zbl1173.65349MR2339993
  5. [5] D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput.69 (2000) 121–140. Zbl0938.65126MR1642801
  6. [6] A. Bossavit, Extrusion, contraction: Their discretization via Whitney forms. COMPEL22 (2004) 470–480. Zbl1161.76602MR1999436
  7. [7] F. Brezzi, L.D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Mod. Meth. Appl. Sci.14 (2004) 1893–1903. Zbl1070.65117MR2108234
  8. [8] P. Castillo, B. Cockburn and I. Perugi and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. Zbl0987.65111MR1813251
  9. [9] M. Clemens, M. Wilke and T. Weiland, Advanced FI2TD algorithms for transient eddy current problems. COMPEL20 (2001) 365–379. Zbl0986.78025
  10. [10] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. Zbl1122.65111MR2218968
  11. [11] R.S. Falk and G.R. Richter, Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36 (1999) 935–952 (electronic). Zbl0923.65065MR1688992
  12. [12] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math.11 (1958) 333–418. Zbl0083.31802MR100718
  13. [13] F.G. Fuchs, K.H. Karlsen, S. Mishra and N.H. Risebro, Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43 (2009) 825–852. Zbl1177.78057MR2559735
  14. [14] F. Henrotte, H. Heumann, E. Lange and K. Haymeyer, Upwind 3-d vector potential formulation for electromagnetic braking simulations. IEEE Trans. Magn.46 (2010) 2835–2838. 
  15. [15] H. Heumann, Eulerian and Semi-Lagrangian Methods for Advection-Diffusion of Differential Forms, Ph.D. thesis, ETH Zürich, Switzerland (2011). Zbl1211.65126
  16. [16] H. Heumann and R. Hiptmair, Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete Contin. Dyn. Syst.29 (2011) 1471–1495. Zbl1211.65126MR2773194
  17. [17] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11237–339 (2002). Zbl1123.78320MR2009375
  18. [18] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math.100 (2005) 485–518. Zbl1071.65155MR2194528
  19. [19] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case. ESAIM: M2AN 39 (2005) 727–753. Zbl1087.65106MR2165677
  20. [20] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal.42 (2004) 434–459. Zbl1084.65115MR2051073
  21. [21] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: non-stabilized formulation. J. Sci. Comput. 22/23 (2005) 315–346. Zbl1091.78017MR2142200
  22. [22] P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal.39 (2002) 2133–2163. Zbl1015.65067MR1897953
  23. [23] T.J.R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In Finite Element Methods for Convection Dominated Flows, vol. 34 of AMD, Amer. Soc. Mech. Engrg. New York (1979) 19–35. Zbl0423.76067MR571679
  24. [24] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173–189. Zbl0697.76100MR1002621
  25. [25] M. Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. Ph.D. thesis, University of Oxford, England (2005). 
  26. [26] M. Jensen, On the discontinuous Galerkin method for Friedrichs systems in graph spaces. In Large-scale scientific computing. Lecture Notes in Comput. Sci., vol. 3743. Springer, Berlin (2006) 94–101. Zbl1142.65445MR2246820
  27. [27] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399 (electronic). Zbl1058.65120MR2034620
  28. [28] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Proc. Sympos., Math. Res. Center, Univ. of Wisconsin-Madison vol. 33. Academic Press, New York (1974) 89–123. Zbl0341.65076MR658142
  29. [29] A. Logg, G.N. Wells and J. Hake, DOLFIN: a C++/Python Finite Element Library, Chapt. 10. Springer (2012). MR3075806
  30. [30] P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. Marsden and M. Desbrun, Discrete Lie advection of differential forms. Foundations of Computational Mathematics11 (2011) 131–149. Zbl1222.35010MR2776394
  31. [31] J.-C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341. Zbl0419.65069MR592160
  32. [32] J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math.50 (1986) 57–81. Zbl0625.65107MR864305
  33. [33] T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal.28 (1991) 133–140. Zbl0729.65085MR1083327
  34. [34] W.H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973). 
  35. [35] G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput.50 (1988) 75–88. Zbl0643.65059MR917819
  36. [36] H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems, volume 24 of Springer Series in Computational Mathematics. 2nd edition. Springer-Verlag, Berlin (2008). Zbl1155.65087MR2454024
  37. [37] G. Zhou, How accurate is the streamline diffusion finite element method? Math. Comput.66 (1997) 31–44. Zbl0854.65094MR1370859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.