Combined trust region methods for nonlinear least squares
Kybernetika (1996)
- Volume: 32, Issue: 2, page 121-138
- ISSN: 0023-5954
Access Full Article
topHow to cite
topLukšan, Ladislav. "Combined trust region methods for nonlinear least squares." Kybernetika 32.2 (1996): 121-138. <http://eudml.org/doc/27336>.
@article{Lukšan1996,
author = {Lukšan, Ladislav},
journal = {Kybernetika},
keywords = {trust region method; Gauss-Newton method; nonlinear least squares problems; algorithms; multiple dog-leg strategy; conjugate gradient Lanczos strategies; numerical experiments},
language = {eng},
number = {2},
pages = {121-138},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Combined trust region methods for nonlinear least squares},
url = {http://eudml.org/doc/27336},
volume = {32},
year = {1996},
}
TY - JOUR
AU - Lukšan, Ladislav
TI - Combined trust region methods for nonlinear least squares
JO - Kybernetika
PY - 1996
PB - Institute of Information Theory and Automation AS CR
VL - 32
IS - 2
SP - 121
EP - 138
LA - eng
KW - trust region method; Gauss-Newton method; nonlinear least squares problems; algorithms; multiple dog-leg strategy; conjugate gradient Lanczos strategies; numerical experiments
UR - http://eudml.org/doc/27336
ER -
References
top- M. Al-Baali R. Fletcher, Variational methods for nonlinear least squares, J. Optim. Theory Appl. 36 (1985), 405-421. (1985)
- R. H. Byrd R. B. Schnabel G. A. Shultz, Approximate solution of the trust region problem by minimization over two-dimensional subspaces, Math. Programming 40 (1988), 247-263. (1988) MR0941311
- J. E. Dennis, Some computational techniques for the nonlinear least squares problem, In: Numerical solution of nonlinear algebraic equations (G. D. Byrne, C. A. Hall, eds.), Academic Press, London 1974. (1974)
- J. E. Dennis H. H. W. Mei, An Unconstrained Optimization Algorithm which Uses Function and Gradient Values, Research Report No. TR-75-246, Department of Computer Science, Cornell University 1975. (1975)
- J. E. Dennis D. M. Gay R. E. Welsch, An adaptive nonlinear least-squares algorithm, ACM Trans. Math. Software 7 (1981), 348-368. (1981)
- J. E. Dennis R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey 1983. (1983) MR0702023
- R. Fletcher, A Modified Marquardt Subroutine for Nonlinear Least Squares, Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971. (1971)
- R. Fletcher, Practical Methods of Optimization, J. Wiley & Sons, Chichester 1987. (1987) Zbl0905.65002MR0955799
- R. Fletcher C. Xu, Hybrid methods for nonlinear least squares, IMA J. Numer. Anal. 7 (1987), 371-389. (1987) Zbl0648.65051MR0968531
- P. E. Gill W. Murray, Newton type methods for unconstrained and linearly constrained optimization, Math. Programming 7 (1974), 311-350. (1974) MR0356503
- G. H. Golub C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore 1989. (1989) MR1002570
- M. R. Hestenes, Conjugate Direction Methods in Optimization, Springer-Verlag, Berlin 1980. (1980) Zbl0439.49001MR0561510
- K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2 (1944), 164-168. (1944) MR0010666
- L. Lukšan, Inexact trust region method for large sparse nonlinear least squares, Kybernetika 29 (1993), 305-324. (1993) MR1247880
- L. Lukšan, Hybrid methods for large sparse nonlinear least squares, J. Optim. Theory Appl. 89 (1996), to appear. (1996) MR1393364
- D. W. Marquardt, An algorithm for least squares estimation of non-linear parameters, SIAM J. Appl. Math. 11 (1963), 431-441. (1963) MR0153071
- J. J. Moré B. S. Garbow K. E. Hillström, Testing unconstrained optimization software, ACM Trans. Math. Software 7 (1981), 17-41. (1981) MR0607350
- J. J. Moré D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. (1983) MR0723110
- M. J. D. Powell, A new algorithm for unconstrained optimization, In: Nonlinear Programming (J. B. Rosen, O. L. Mangasarian, K. Ritter, eds.), Academic Press, London 1970. (1970) Zbl0228.90043MR0272162
- M. J. D. Powell, On the global convergence of trust region algorithms for unconstrained minimization, Math. Programming 29 (1984), 297-303. (1984) Zbl0569.90069MR0753758
- G. A. Shultz R. B. Schnabel R. H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. Numer. Anal. 22 (1985), 47-67. (1985) MR0772882
- T. Steihaug, The conjugate gradient method and trust regions in large-scale optimization, SIAM J. Numer. Anal. 20 (1983), 626-637. (1983) Zbl0518.65042MR0701102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.