Inexact trust region method for large sparse nonlinear least squares

Ladislav Lukšan

Kybernetika (1993)

  • Volume: 29, Issue: 4, page 305-324
  • ISSN: 0023-5954

How to cite

top

Lukšan, Ladislav. "Inexact trust region method for large sparse nonlinear least squares." Kybernetika 29.4 (1993): 305-324. <http://eudml.org/doc/28784>.

@article{Lukšan1993,
author = {Lukšan, Ladislav},
journal = {Kybernetika},
keywords = {inexact trust region method; large sparse nonlinear least squares; bidiagonalized linear least squares algorithm; direction determination},
language = {eng},
number = {4},
pages = {305-324},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Inexact trust region method for large sparse nonlinear least squares},
url = {http://eudml.org/doc/28784},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Lukšan, Ladislav
TI - Inexact trust region method for large sparse nonlinear least squares
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 4
SP - 305
EP - 324
LA - eng
KW - inexact trust region method; large sparse nonlinear least squares; bidiagonalized linear least squares algorithm; direction determination
UR - http://eudml.org/doc/28784
ER -

References

top
  1. G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal. 2 (1965), 205-224. (1965) Zbl0194.18201MR0183105
  2. J. J. More B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software 7 (1981), 17-41. (1981) MR0607350
  3. J. E. Dennis, H. H. W. Mei, An Unconstrained Optimization Algorithm which Uses Function and Gradient Vlues, Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975. (1975) 
  4. C. C. Paige, Bidiagonalization of matrices and solution of linear equations, SIAM J. Numer. Anal. 11 (1974), 197-209. (1974) Zbl0244.65023MR0341842
  5. C. C. Paige, M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8 (1982), 43-71. (1982) Zbl0478.65016MR0661121
  6. M. J. D. Powell, Convergence properties of a class of minimization algoritms, In: Non-linear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1975. (1975) MR0386270
  7. G. A. Shultz R. B. Schnabel, R. H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. Numer. Anal. 22 (1985), 47-67. (1985) MR0772882
  8. T. Steihaug, The conjugate gradient method and trust regions in large-scale optimization, SIAM J. Numer. Anal. 20 (1983), 626-637. (1983) Zbl0518.65042MR0701102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.