Quotient Overrings

Hans H. Storrer

Publications du Département de mathématiques (Lyon) (1973)

  • Volume: 10, Issue: 1, page 25-37
  • ISSN: 0076-1656

How to cite

top

Storrer, Hans H.. "Quotient Overrings." Publications du Département de mathématiques (Lyon) 10.1 (1973): 25-37. <http://eudml.org/doc/273404>.

@article{Storrer1973,
author = {Storrer, Hans H.},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
number = {1},
pages = {25-37},
publisher = {Université Claude Bernard - Lyon 1},
title = {Quotient Overrings},
url = {http://eudml.org/doc/273404},
volume = {10},
year = {1973},
}

TY - JOUR
AU - Storrer, Hans H.
TI - Quotient Overrings
JO - Publications du Département de mathématiques (Lyon)
PY - 1973
PB - Université Claude Bernard - Lyon 1
VL - 10
IS - 1
SP - 25
EP - 37
LA - eng
UR - http://eudml.org/doc/273404
ER -

References

top
  1. [1] Bourbaki N., Algèbre commutative, chap. I et II. Paris, Hermann, 1961. Zbl0119.03603
  2. [2] H.S. Butts, and C.G. Spaht, Generalized quotient rings, Math. Nachr.53, p. 181-210, 1972. Zbl0242.13014MR384773
  3. [3] P.M. Cohn, Morita equivalence and duality, Queen Mary College Lecture Notes. Zbl0377.16015
  4. [4] G.D. Findlay and J. Lambek, A generalized ring of quotients, I, II, Canad. Math. Bull.1, 1958, p. 77-85. 155-167. Zbl0085.26103MR94370
  5. [5] R. Gilmer and W. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ.7, p. 133-150, 1967. Zbl0166.30601MR223349
  6. [6] R. Gilmer and J. Ohm, Integral domains with quotient overrings. Math. Ann. 153, 97-103, 1964. Zbl0128.26004MR159835
  7. [7] W. Heinzer, Quotient overrings of integral domains, Mathematika17, 139-148, 1970. Zbl0201.37202MR265334
  8. [8] W. Heinzer, J. Ohm and R. Pendleton, On integral domains of the form D P , P minimal. J. Reine ang. Math.241, 147-159, 1970. Zbl0191.32202MR263793
  9. [9] J. Kuzmanovich, Localizations of Dedekind prime rings. J. Algebra21, 378-393, 1972. Zbl0236.16002MR311698
  10. [10] J. Lambek, Lectures on rings and modules, Waltham, Blaisdell1966. Zbl0143.26403MR206032
  11. [11] J. Lambek, Torsion theories, additive semantics and rings of quotients, Lecture Notes in Mathematics, vol. 177, Berlin, Heidelberg, New-York : Springer1971. Zbl0213.31601MR284459
  12. [12] M.D. Larsen, and P.J. McCarty, Multiplicative ideal theory, New-York, London Academic Press1971. Zbl0237.13002
  13. [13] J. Raynaud, Sur la théorie de la localisation, Thèse, Univ. C. Bernard, Lyon I1971. 
  14. [14] B. Stenstrom, Rings and modules of quotients, Lecture Notes in Mathematics, vol. 236, Berlin, Heidelberg, New-York : Springer1971. Zbl0229.16003MR325663
  15. [15] H.H. Storrer, Epimorphismen von kommutativen Ringen, Comment. Math. Helv. 43, 378-401, 1968. Zbl0165.05301MR242810
  16. [16] H.H. Storrer, A characterization of Prüfer domains, Canad. Math. Bull.12, 809-812, 1969. Zbl0185.28401MR254025
  17. [17] H.H. Storrer, Rings of quotients of perfect rings, Math. Z.122, 151-165, 1971. Zbl0214.05302MR299636
  18. [18] Y. Utumi, On quotient rings, Osaka Math. J.8, 1-18, 1956. Zbl0070.26601MR78966
  19. [19] C.L. Walker and E.A. Walker, Quotient categories and rings of quotients, Rocky Mountain, J. Math.2, 513-555, 1972. Zbl0276.16007MR338045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.