On maps of spaces determined by countable subspaces
Karnik, S.M. (1981)
Portugaliae mathematica
Similarity:
Karnik, S.M. (1981)
Portugaliae mathematica
Similarity:
Ernest Michael (1968)
Annales de l'institut Fourier
Similarity:
Dans ce travail, on introduit une nouvelle classe d’applications, qui semble avoir beaucoup de propriétés désirables. En particulier, cette classe permet de donner une caractérisation des applications dont le produit cartésien avec une application quotient quelconque est toujours une application quotient.
Stone, A. H.
Similarity:
R. H. Marty (1972)
Compositio Mathematica
Similarity:
Paul Fabel (2011)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The natural quotient map q from the space of based loops in the Hawaiian earring onto the fundamental group provides a naturally occuring example of a quotient map such that q × q fails to be a quotient map. With the quotient topology, this example shows π₁(X,p) can fail to be a topological group if X is locally path connected.
Louis Friedler (1973)
Fundamenta Mathematicae
Similarity:
Artur Michalak (2016)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
We say that an infinite, zero dimensional, compact Hausdorff space K has property (*) if for every nonempty open subset U of K there exists an open and closed subset V of U which is homeomorphic to K. We show that if K is a compact Hausdorff space with property (*) and X is a Banach space which contains a subspace isomorphic to the space C(K) of all scalar (real or complex) continuous functions on K and Y is a closed linear subspace of X which does not contain any subspace isomorphic...
Ernest Michael (1968)
Annales de l'institut Fourier
Similarity:
On démontre que la compacité locale, qui est une condition suffisante dans certains théorèmes de J.H.C. Whitehead et de D.E. Cohen sur les produits cartésiens, y est aussi nécessaire.
Jürgen Hausen (2003)
Colloquium Mathematicae
Similarity:
Let the special linear group G : = SL₂ act regularly on a ℚ-factorial variety X. Consider a maximal torus T ⊂ G and its normalizer N ⊂ G. We prove: If U ⊂ X is a maximal open N-invariant subset admitting a good quotient U → U ⃫N with a divisorial quotient space, then the intersection W(U) of all translates g · U is open in X and admits a good quotient W(U) → W(U) ⃫G with a divisorial quotient space. Conversely, we show that every maximal open G-invariant subset W ⊂ X admitting a good...