Contrôlabilité des systèmes bilinéaires dans le plan
Publications du Département de mathématiques (Lyon) (1985)
- Issue: 3A, page 1-56
- ISSN: 0076-1656
Access Full Article
topHow to cite
topAdda, Philippe. "Contrôlabilité des systèmes bilinéaires dans le plan." Publications du Département de mathématiques (Lyon) (1985): 1-56. <http://eudml.org/doc/273440>.
@article{Adda1985,
author = {Adda, Philippe},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {bilinear control systems; controllability; accessibility; families of homogeneous vector fields},
language = {fre},
number = {3A},
pages = {1-56},
publisher = {Université Claude Bernard - Lyon 1},
title = {Contrôlabilité des systèmes bilinéaires dans le plan},
url = {http://eudml.org/doc/273440},
year = {1985},
}
TY - JOUR
AU - Adda, Philippe
TI - Contrôlabilité des systèmes bilinéaires dans le plan
JO - Publications du Département de mathématiques (Lyon)
PY - 1985
PB - Université Claude Bernard - Lyon 1
IS - 3A
SP - 1
EP - 56
LA - fre
KW - bilinear control systems; controllability; accessibility; families of homogeneous vector fields
UR - http://eudml.org/doc/273440
ER -
References
top- [1] V. Arnold, Méthodes mathématiques de la mécanique classique Ed. Mir. Moscou. Zbl0385.70001
- [2] J. Bailleul, Geometric methods for non linear optimal control problems. J. of Optim. theory and applications vol. 25 n° 4 (1978), p. 519-548. MR511616
- [3] The geometry of homogeneous polynomial dynamical systems. - Non linear analysis, theory, methods and applications vol. 4 (1980), p. 879-900. Zbl0473.34022MR586853
- [4] B. Bonnard, Controlabilité et observabilité d'une certaine classe de systèmes linéaires (à paraitre) - Note LAG, Grenoble82-09.
- [5] Controle de l'attitude d'un satellite rigide. RAIRO série automatique vol. 16 n° 1 (1982) p. 85-93. Zbl0483.93022
- [6] Controllability of mechanical control systems on Lie groups (to appear).
- [7] W. Boothby, A transitivity problem from control theory - J. Diff ; Eq. 17 (1975) p. 296-307. Zbl0316.93006MR436210
- [8] W. Boothby and E. N. Wilson, Determination of the transitivity of bilinear systems - SIAM J. Control17 (1979) p. 212- Zbl0406.93037MR525022
- [9] C. Bruni, D. Dipillo and G. Koch, Bilinear systems : on appealing class of nearly linear systems in theory and applications. IEEE Trans. Automat. Control. Vol. 19 (1974) p. 334-348. Zbl0285.93015MR414174
- [10] M. Denis-Papin, A. Kaufmann, Cours de calcul opérationnel appliqué. Albin Michel (1967). Zbl0038.26802MR352892
- [11] M. Fliess, Séries de Volterra et séries formelles non commutatives. C.R. Acad. Sc. Paris (1975) p. 965-967. Zbl0309.93028MR381784
- [12] J. P. Gauthier, G. Bonnard, A theorem of controllability for bilinear system - Note interne LAGGrenoble81-04.
- [13] H. Hermes, On the synthesis of a stabilizing feedback control via Lie algebraïc methods. SIAM J. Control, vol. 18 n° 4 (1980), p. 352-360. Zbl0477.93046MR579546
- [14] R. Hirschorn, Controllability in non linear systems. J. Diff ; Eq. 19 (1975) p. 46-61. Zbl0315.93002
- [15] L. R. Hunt, Controllability of general nonlinear systems. Math. systems theory12 (1979) p. 361-370. Zbl0394.93010MR541864
- [16] V. Jurdjevic and I. KupkaControl systems on semi-simple Lie groups and their homogeneous spaces, Ann. Institut Fourier Tome 3, fasc. 4 (1981) p. 151-179. Zbl0453.93011MR644347
- [17] Control systems subordinated to a group action : Accessibility. J. Diff. Eq. vol. 39 n° 2 (1981) p. 186-211. Zbl0531.93008MR607781
- [18] V. Jurdjevic and G. Sallet, Controllability property of affine systems (to appear) SIAM J. on Control. Zbl0549.93010
- [19] A. J. Krener, A generalization of Chow's theorem and the bang-bang theorem to non linear control problems. SIAM J. Control12 (1974) p. 43-52. Zbl0243.93008MR383206
- [20] I. Kupka, Thèse. Université de Dijon (1978).
- [21] C. LobryBases mathématiques de la théorie des systèmes asservis non linéaires. (non publié).
- [22] R. I. Rink and R. R. Mohler, Completely controllable bilinear systems. SIAM J. Control vol. 6 n° 3 (1968). Zbl0159.13001MR255270
- [23] G. Sallet, Extension techniques. Encyclopaedia of control. Pergamon press. Madan Singh.
- [24] Encadrement des ensembles d'accessibilité en temps exact. Application à la théorie des systèmes (à paraître).
- [25] G. Sallet, Sur la structure de l'ensemble d'accessibilité de certains systèmes. Application à l'équivalence des systèmes, (à paraître). Zbl0574.49023
- [26] B. V. Schmitt, Sur la structure de l'équation de Duffing sans dissipation. SIAM J. Appl. Math. vol. 42 (1982) p. 868-894. Zbl0515.34031MR665391
- [27] M. B. Surymarayana, Linear control problems with total differential equations without convexity. American Math. Soc. (1974). Zbl0297.49005
- [28] H. J. Sussmann, Semi-groups representations, bilinear approximation of input-output maps and generalized inputs. Mathematical systems theory and Lecture notes in Economics and Math. systems n° 131 p. 172-191. G. Marchesin and S.K. Mitter Ed. Zbl0353.93025MR683616
- [29] Some properties of vector fields systems that are not altered by small perturbations. J. Diff. Eq. Vol. 20 n° 2 (1976) p. 292-315. Zbl0346.49036MR394756
- [30] A sufficient condition for local controllability. SIAM J. control and Opt. vol. 16 n° 5 (3978) p. 790-802. Zbl0391.93004MR527718
- [31] H. J. Sussmann and V. Jurdjevic, Controllability of non linear systems. J. DIFF. Eq.12 (1972) p. 95-116. Zbl0242.49040MR338882
- [32] W.M. Wonham, Linear multivariable control. A geometric approach. Lecture notes in Economics and Maths systems n° 101. M. Beckmann and H.P. Kiinzi Ed. Zbl0314.93007MR770574
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.