Contrôlabilité des systèmes bilinéaires dans le plan

Philippe Adda

Publications du Département de mathématiques (Lyon) (1985)

  • Issue: 3A, page 1-56
  • ISSN: 0076-1656

How to cite


Adda, Philippe. "Contrôlabilité des systèmes bilinéaires dans le plan." Publications du Département de mathématiques (Lyon) (1985): 1-56. <>.

author = {Adda, Philippe},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {bilinear control systems; controllability; accessibility; families of homogeneous vector fields},
language = {fre},
number = {3A},
pages = {1-56},
publisher = {Université Claude Bernard - Lyon 1},
title = {Contrôlabilité des systèmes bilinéaires dans le plan},
url = {},
year = {1985},

AU - Adda, Philippe
TI - Contrôlabilité des systèmes bilinéaires dans le plan
JO - Publications du Département de mathématiques (Lyon)
PY - 1985
PB - Université Claude Bernard - Lyon 1
IS - 3A
SP - 1
EP - 56
LA - fre
KW - bilinear control systems; controllability; accessibility; families of homogeneous vector fields
UR -
ER -


  1. [1] V. Arnold, Méthodes mathématiques de la mécanique classique Ed. Mir. Moscou. Zbl0385.70001
  2. [2] J. Bailleul, Geometric methods for non linear optimal control problems. J. of Optim. theory and applications vol. 25 n° 4 (1978), p. 519-548. MR511616
  3. [3] The geometry of homogeneous polynomial dynamical systems. - Non linear analysis, theory, methods and applications vol. 4 (1980), p. 879-900. Zbl0473.34022MR586853
  4. [4] B. Bonnard, Controlabilité et observabilité d'une certaine classe de systèmes linéaires (à paraitre) - Note LAG, Grenoble82-09. 
  5. [5] Controle de l'attitude d'un satellite rigide. RAIRO série automatique vol. 16 n° 1 (1982) p. 85-93. Zbl0483.93022
  6. [6] Controllability of mechanical control systems on Lie groups (to appear). 
  7. [7] W. Boothby, A transitivity problem from control theory - J. Diff ; Eq. 17 (1975) p. 296-307. Zbl0316.93006MR436210
  8. [8] W. Boothby and E. N. Wilson, Determination of the transitivity of bilinear systems - SIAM J. Control17 (1979) p. 212- Zbl0406.93037MR525022
  9. [9] C. Bruni, D. Dipillo and G. Koch, Bilinear systems : on appealing class of nearly linear systems in theory and applications. IEEE Trans. Automat. Control. Vol. 19 (1974) p. 334-348. Zbl0285.93015MR414174
  10. [10] M. Denis-Papin, A. Kaufmann, Cours de calcul opérationnel appliqué. Albin Michel (1967). Zbl0038.26802MR352892
  11. [11] M. Fliess, Séries de Volterra et séries formelles non commutatives. C.R. Acad. Sc. Paris (1975) p. 965-967. Zbl0309.93028MR381784
  12. [12] J. P. Gauthier, G. Bonnard, A theorem of controllability for bilinear system - Note interne LAGGrenoble81-04. 
  13. [13] H. Hermes, On the synthesis of a stabilizing feedback control via Lie algebraïc methods. SIAM J. Control, vol. 18 n° 4 (1980), p. 352-360. Zbl0477.93046MR579546
  14. [14] R. Hirschorn, Controllability in non linear systems. J. Diff ; Eq. 19 (1975) p. 46-61. Zbl0315.93002
  15. [15] L. R. Hunt, Controllability of general nonlinear systems. Math. systems theory12 (1979) p. 361-370. Zbl0394.93010MR541864
  16. [16] V. Jurdjevic and I. KupkaControl systems on semi-simple Lie groups and their homogeneous spaces, Ann. Institut Fourier Tome 3, fasc. 4 (1981) p. 151-179. Zbl0453.93011MR644347
  17. [17] Control systems subordinated to a group action : Accessibility. J. Diff. Eq. vol. 39 n° 2 (1981) p. 186-211. Zbl0531.93008MR607781
  18. [18] V. Jurdjevic and G. Sallet, Controllability property of affine systems (to appear) SIAM J. on Control. Zbl0549.93010
  19. [19] A. J. Krener, A generalization of Chow's theorem and the bang-bang theorem to non linear control problems. SIAM J. Control12 (1974) p. 43-52. Zbl0243.93008MR383206
  20. [20] I. Kupka, Thèse. Université de Dijon (1978). 
  21. [21] C. LobryBases mathématiques de la théorie des systèmes asservis non linéaires. (non publié). 
  22. [22] R. I. Rink and R. R. Mohler, Completely controllable bilinear systems. SIAM J. Control vol. 6 n° 3 (1968). Zbl0159.13001MR255270
  23. [23] G. Sallet, Extension techniques. Encyclopaedia of control. Pergamon press. Madan Singh. 
  24. [24] Encadrement des ensembles d'accessibilité en temps exact. Application à la théorie des systèmes (à paraître). 
  25. [25] G. Sallet, Sur la structure de l'ensemble d'accessibilité de certains systèmes. Application à l'équivalence des systèmes, (à paraître). Zbl0574.49023
  26. [26] B. V. Schmitt, Sur la structure de l'équation de Duffing sans dissipation. SIAM J. Appl. Math. vol. 42 (1982) p. 868-894. Zbl0515.34031MR665391
  27. [27] M. B. Surymarayana, Linear control problems with total differential equations without convexity. American Math. Soc. (1974). Zbl0297.49005
  28. [28] H. J. Sussmann, Semi-groups representations, bilinear approximation of input-output maps and generalized inputs. Mathematical systems theory and Lecture notes in Economics and Math. systems n° 131 p. 172-191. G. Marchesin and S.K. Mitter Ed. Zbl0353.93025MR683616
  29. [29] Some properties of vector fields systems that are not altered by small perturbations. J. Diff. Eq. Vol. 20 n° 2 (1976) p. 292-315. Zbl0346.49036MR394756
  30. [30] A sufficient condition for local controllability. SIAM J. control and Opt. vol. 16 n° 5 (3978) p. 790-802. Zbl0391.93004MR527718
  31. [31] H. J. Sussmann and V. Jurdjevic, Controllability of non linear systems. J. DIFF. Eq.12 (1972) p. 95-116. Zbl0242.49040MR338882
  32. [32] W.M. Wonham, Linear multivariable control. A geometric approach. Lecture notes in Economics and Maths systems n° 101. M. Beckmann and H.P. Kiinzi Ed. Zbl0314.93007MR770574

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.