Quantification d'une variété symplectique

G. Patissier

Publications du Département de mathématiques (Lyon) (1986)

  • Volume: 4/B, Issue: 4B, page 35-54
  • ISSN: 0076-1656

How to cite

top

Patissier, G.. "Quantification d'une variété symplectique." Publications du Département de mathématiques (Lyon) 4/B.4B (1986): 35-54. <http://eudml.org/doc/273482>.

@article{Patissier1986,
author = {Patissier, G.},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {linear quantisation; symmetric quantisation; asymptotic quantisation; deformations},
language = {fre},
number = {4B},
pages = {35-54},
publisher = {Université Claude Bernard - Lyon 1},
title = {Quantification d'une variété symplectique},
url = {http://eudml.org/doc/273482},
volume = {4/B},
year = {1986},
}

TY - JOUR
AU - Patissier, G.
TI - Quantification d'une variété symplectique
JO - Publications du Département de mathématiques (Lyon)
PY - 1986
PB - Université Claude Bernard - Lyon 1
VL - 4/B
IS - 4B
SP - 35
EP - 54
LA - fre
KW - linear quantisation; symmetric quantisation; asymptotic quantisation; deformations
UR - http://eudml.org/doc/273482
ER -

References

top
  1. [1] Abraham, Marsden, Foundations of Mechanics, Ed. Benjamin (1978). Zbl0393.70001
  2. [2] V.I. Arnold, Méthodes mathématiques de la Mécanique classique. Editions MIR. Zbl0385.70001
  3. [3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and Quantization I, Annals of Physics (1978), 61-151. Zbl0377.53024MR496157
  4. [4] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and Quantization II, Annals of Physics (1978). Zbl0377.53025
  5. [5] F.A. Berezin, M.A. Subin, Symbols of operators and quantization, Colloquia Mathematica Societatis Janos Bolyai, 5» Hilbert spac, op. Tihany (Hungary) (1970), Zbl0262.47036
  6. [6] Guillemin, S. Sternberg, Geometric asymptotics, Math. Surveys, n° 14 (1977) Zbl0364.53011MR516965
  7. [7] Hirzebruch, Topological methods in algebraic geometry, Springer (1966). Zbl0070.16302
  8. [8] L. Hormander, Fourier integral operators I, Acta Mathematica127, (1971), p. 79-183. Zbl0212.46601MR388463
  9. [9] L. Hormander, The WEYL calculus of pseudo differential operators, Comm. Pure, Appl. Math.32 (1979), p. 359-443. Zbl0388.47032MR517939
  10. [10] M.V. Karasev, V.P. Maslov, Pseudo-differential operators and a canonical operator in general symplectic manifold. Math USSR. Izvestiya, Vol. 23 (1984), n° 2. Zbl0554.58048
  11. [11] M.V. Karasev, V.P. Maslov, Asymptotic and geometric Quantization, Russian Math. Surveys39 : 6 (1984), p. 133-205. Zbl0588.58031MR771100
  12. [12] V.P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972). Zbl0247.47010
  13. [13] Voros, An algebra of pseudo-differential operators and the asymptotics of Quantum Mechanics. Journal of funct. analysis, Vol. 29, n° 1, (1978), p. 104-132. Zbl0386.47031MR496088
  14. [14] N.R. Wallach, Symplectic Geometry and FOURIER Analysis, Math. SCI PRESS (1977). Zbl0379.53010MR488148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.