Quantification d'une variété symplectique
Publications du Département de mathématiques (Lyon) (1986)
- Volume: 4/B, Issue: 4B, page 35-54
- ISSN: 0076-1656
Access Full Article
topHow to cite
topPatissier, G.. "Quantification d'une variété symplectique." Publications du Département de mathématiques (Lyon) 4/B.4B (1986): 35-54. <http://eudml.org/doc/273482>.
@article{Patissier1986,
author = {Patissier, G.},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {linear quantisation; symmetric quantisation; asymptotic quantisation; deformations},
language = {fre},
number = {4B},
pages = {35-54},
publisher = {Université Claude Bernard - Lyon 1},
title = {Quantification d'une variété symplectique},
url = {http://eudml.org/doc/273482},
volume = {4/B},
year = {1986},
}
TY - JOUR
AU - Patissier, G.
TI - Quantification d'une variété symplectique
JO - Publications du Département de mathématiques (Lyon)
PY - 1986
PB - Université Claude Bernard - Lyon 1
VL - 4/B
IS - 4B
SP - 35
EP - 54
LA - fre
KW - linear quantisation; symmetric quantisation; asymptotic quantisation; deformations
UR - http://eudml.org/doc/273482
ER -
References
top- [1] Abraham, Marsden, Foundations of Mechanics, Ed. Benjamin (1978). Zbl0393.70001
- [2] V.I. Arnold, Méthodes mathématiques de la Mécanique classique. Editions MIR. Zbl0385.70001
- [3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and Quantization I, Annals of Physics (1978), 61-151. Zbl0377.53024MR496157
- [4] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and Quantization II, Annals of Physics (1978). Zbl0377.53025
- [5] F.A. Berezin, M.A. Subin, Symbols of operators and quantization, Colloquia Mathematica Societatis Janos Bolyai, 5» Hilbert spac, op. Tihany (Hungary) (1970), Zbl0262.47036
- [6] Guillemin, S. Sternberg, Geometric asymptotics, Math. Surveys, n° 14 (1977) Zbl0364.53011MR516965
- [7] Hirzebruch, Topological methods in algebraic geometry, Springer (1966). Zbl0070.16302
- [8] L. Hormander, Fourier integral operators I, Acta Mathematica127, (1971), p. 79-183. Zbl0212.46601MR388463
- [9] L. Hormander, The WEYL calculus of pseudo differential operators, Comm. Pure, Appl. Math.32 (1979), p. 359-443. Zbl0388.47032MR517939
- [10] M.V. Karasev, V.P. Maslov, Pseudo-differential operators and a canonical operator in general symplectic manifold. Math USSR. Izvestiya, Vol. 23 (1984), n° 2. Zbl0554.58048
- [11] M.V. Karasev, V.P. Maslov, Asymptotic and geometric Quantization, Russian Math. Surveys39 : 6 (1984), p. 133-205. Zbl0588.58031MR771100
- [12] V.P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972). Zbl0247.47010
- [13] Voros, An algebra of pseudo-differential operators and the asymptotics of Quantum Mechanics. Journal of funct. analysis, Vol. 29, n° 1, (1978), p. 104-132. Zbl0386.47031MR496088
- [14] N.R. Wallach, Symplectic Geometry and FOURIER Analysis, Math. SCI PRESS (1977). Zbl0379.53010MR488148
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.