The isomorphism problem for toral relatively hyperbolic groups

François Dahmani; Daniel Groves

Publications Mathématiques de l'IHÉS (2008)

  • Volume: 107, page 211-290
  • ISSN: 0073-8301

Abstract

top
We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic n -manifolds, for n 3 . In the course of the proof of the main result, we prove that a particular JSJ decomposition of a freely indecomposable torsion-free relatively hyperbolic group with abelian parabolics is algorithmically constructible.

How to cite

top

Dahmani, François, and Groves, Daniel. "The isomorphism problem for toral relatively hyperbolic groups." Publications Mathématiques de l'IHÉS 107 (2008): 211-290. <http://eudml.org/doc/273597>.

@article{Dahmani2008,
abstract = {We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic $n$-manifolds, for $n\ge 3$. In the course of the proof of the main result, we prove that a particular JSJ decomposition of a freely indecomposable torsion-free relatively hyperbolic group with abelian parabolics is algorithmically constructible.},
author = {Dahmani, François, Groves, Daniel},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {isomorphism problem; relatively hyperbolic groups; hyperbolic manifolds; finitely presented groups; parabolic subgroups; torsionfree hyperbolic groups; limit groups; algorithms; JSJ decompositions},
language = {eng},
pages = {211-290},
publisher = {Institut des hautes études scientifiques},
title = {The isomorphism problem for toral relatively hyperbolic groups},
url = {http://eudml.org/doc/273597},
volume = {107},
year = {2008},
}

TY - JOUR
AU - Dahmani, François
AU - Groves, Daniel
TI - The isomorphism problem for toral relatively hyperbolic groups
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 211
EP - 290
AB - We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic $n$-manifolds, for $n\ge 3$. In the course of the proof of the main result, we prove that a particular JSJ decomposition of a freely indecomposable torsion-free relatively hyperbolic group with abelian parabolics is algorithmically constructible.
LA - eng
KW - isomorphism problem; relatively hyperbolic groups; hyperbolic manifolds; finitely presented groups; parabolic subgroups; torsionfree hyperbolic groups; limit groups; algorithms; JSJ decompositions
UR - http://eudml.org/doc/273597
ER -

References

top
  1. [1] Adian, S.I. (1957) The unsolvability of certain algorithmic problems in the theory of groups. Trudy Moskov. Obsc. 6: pp. 231-298 MR95872
  2. [2] Alibegović, E. (2005) A combination theorem for relatively hyperbolic groups. Bull. Lond. Math. Soc. 37: pp. 459-466 Zbl1074.57001MR2131400
  3. [3] Baumslag, G., Gildenhuys, D., Strebel, R. (1986) Algorithmically insoluble problems about finitely presented soluble groups, Lie and associative algebras, I. J. Pure Appl. Algebra 39: pp. 53-94 Zbl0577.20021MR816890
  4. [4] Belegradek, I. (2007) Aspherical manifolds with relatively hyperbolic fundamental groups. Geom. Dedicata 129: pp. 119-144 Zbl1139.20036MR2353987
  5. [5] Bestvina, M. (1988) Degenerations of hyperbolic space. Duke Math. J. 56: pp. 143-161 Zbl0652.57009MR932860
  6. [6] Bestvina, M., Feighn, M. (1991) Bounding the complexity of simplicial group actions. Invent. Math. 103: pp. 449-469 Zbl0724.20019MR1091614
  7. [7] Bestvina, M., Feighn, M. (1995) Stable actions of groups on real trees. Invent. Math. 121: pp. 287-321 Zbl0837.20047MR1346208
  8. [8] Bowditch, B.H. (1998) Cut points and canonical splittings of hyperbolic groups. Acta Math. 180: pp. 145-186 Zbl0911.57001MR1638764
  9. [9] B. H. Bowditch, Relatively Hyperbolic Groups, preprint (1999). Zbl1259.20052MR2922380
  10. [10] Bowditch, B.H. (2001) Peripheral splittings of groups. Trans. Amer. Math. Soc. 353: pp. 4057-4082 Zbl1037.20041MR1837220
  11. [11] Bridson, M.R., Swarup, G.A. (1994) On Hausdorff-Gromov convergence and a theorem of Paulin. Enseign. Math. 40: pp. 267-289 Zbl0846.20038MR1309129
  12. [12] Brown, K.S. (1982) Cohomology of Groups. Springer, New York, Berlin Zbl0584.20036MR672956
  13. [13] Bumagin, I. (2004) The conjugacy problem for relatively hyperbolic groups. Algebr. Geom. Topol. 4: pp. 1013-1040 Zbl1111.20035MR2100689
  14. [14] Bumagin, I., Kharlampovich, O., Miasnikov, A. (2007) Isomorphism problem for finitely generated fully residually free groups. J. Pure Appl. Algebra 208: pp. 961-977 Zbl1121.20026MR2283438
  15. [15] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Les groupes hyperboliques de M. Gromov, Lect. Notes Math., vol. 1441, Springer, Berlin, 1991. Zbl0727.20018
  16. [16] F. Dahmani, Les groupes relativement hyperboliques et leurs bords, PhD Thesis, Strasbourg (2003) MR2105643
  17. [17] Dahmani, F. (2003) Combination of convergence groups. Geom. Topol. 7: pp. 933-963 Zbl1037.20042MR2026551
  18. [18] Dahmani, F. (2008) Finding relative hyperbolic structures. Bull. Lond. Math. Soc. 40: pp. 395-404 Zbl1166.20034MR2418795
  19. [19] F. Dahmani, Existential questions in (relatively) hyperbolic groups, Isr. J. Math., to appear. Zbl1189.20034MR2570661
  20. [20] F. Dahmani and D. Groves, Detecting free splittings in relatively hyperbolic groups, Trans. Amer. Math. Soc., to appear. Zbl1196.20050MR2434288
  21. [21] Dehn, M. (1912) Über unendliche diskontinuierliche Gruppen. Math. Ann. 71: pp. 413-421 Zbl42.0508.03MR1511705JFM42.0508.03
  22. [22] Dehn, M. (1987) Papers on Group Theory and Topology, Translated from the German and with Introductions and an Appendix by John Stillwell, with an Appendix by Otto Schreier. Springer, New York MR881797
  23. [23] Diekert, V., Gutiérrez, C., Hagenah, C. (2005) The existential theory of equations with rational constraints in free groups is PSPACE-complete. Inform. Comput. 202: pp. 105-140 Zbl1101.68649MR2172984
  24. [24] V. Diekert and A. Muscholl, Solvability of equations in free partially commutative groups is decidable, in Automata, Languages and Programming, Lect. Notes Comput. Sci., vol. 2076, Springer, 2001, pp. 543-554. Zbl0986.20036MR2066532
  25. [25] Druţu, C., Sapir, M. (2005) Tree-graded spaces and asymptotic cones of groups. Topology 44: pp. 959-1058 Zbl1101.20025MR2153979
  26. [26] Druţu, C., Sapir, M. (2007) Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups. Adv. Math. 217: pp. 1313-1367 Zbl1138.20024MR2383901
  27. [27] Dunwoody, M., Sageev, M. (1999) JSJ-splittings for finitely presented groups over slender groups. Invent. Math. 135: pp. 25-44 Zbl0939.20047MR1664694
  28. [28] Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W. (1992) Word Processing in Groups. Jones and Bartlett, Boston Zbl0764.20017MR1161694
  29. [29] Farb, B. (1998) Relatively hyperbolic groups. Geom. Funct. Anal. 8: pp. 810-840 Zbl0985.20027MR1650094
  30. [30] Forester, M. (2003) On uniqueness of JSJ decompositions of finitely generated groups. Comment. Math. Helv. 78: pp. 740-751 Zbl1040.20032MR2016693
  31. [31] Fujiwara, K., Papasoglu, P. (2006) JSJ decompositions of finitely presented groups and complexes of groups. Geom. Funct. Anal. 16: pp. 70-125 Zbl1097.20037MR2221253
  32. [32] V. Gerasimov, Detecting connectedness of the boundary of a hyperbolic group, preprint. 
  33. [33] Grigorchuk, R., Lysenok, I. (1992) A description of solutions of quadratic equations in hyperbolic groups. Int. J. Algebra Comput. 2: pp. 237-274 Zbl0762.20014MR1189234
  34. [34] M. Gromov, Hyperbolic groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. Zbl0634.20015MR919829
  35. [35] Groves, D. (2005) Limits of certain CAT(0) groups, I: Compactification. Algebr. Geom. Topol. 5: pp. 1325-1364 Zbl1085.20025MR2171812
  36. [36] D. Groves, Limit groups for relatively hyperbolic groups, I: The basic tools, preprint. Zbl1231.20038MR2530123
  37. [37] Groves, D. (2005) Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams. Geom. Topol. 9: pp. 2319-2358 Zbl1100.20032MR2209374
  38. [38] Grunewald, F., Segal, D. (1980) Some general algorithms. II. Nilpotent groups. Ann. Math. (2) 112: pp. 585-617 Zbl0457.20048MR595207
  39. [39] Guirardel, V. (2004) Limit groups and groups acting freely on R n -trees. Geom. Topol. 8: pp. 1427-1470 Zbl1114.20013MR2119301
  40. [40] Hruska, G.C., Kleiner, B. (2005) Hadamard spaces with isolated flats, with an appendix by the authors and Mohamad Hindawi. Geom. Topol. 9: pp. 1501-1538 Zbl1087.20034MR2175151
  41. [41] Hummel, C. (1998) Rank one lattices whose parabolic isometries have no rational part. Proc. Amer. Math. Soc. 126: pp. 2453-2458 Zbl0898.22005MR1443390
  42. [42] Kharlampovich, O., Miasnikov, A. (2005) Effective JSJ decompositions. Groups, Languages and Algorithms. Amer. Math. Soc., Providence, RI, pp. 87-212 Zbl1093.20019MR2159316
  43. [43] Kharlampovich, O., Miasnikov, A. (2006) Elementary theory of free non-abelian groups. J. Algebra 302: pp. 451-552 Zbl1110.03020MR2293770
  44. [44] Levitt, G. (2005) Automorphisms of hyperbolic groups and graphs of groups. Geom. Dedicata 114: pp. 49-70 Zbl1107.20030MR2174093
  45. [45] Levitt, G. (2005) Characterizing rigid simplicial actions on trees. Geometric Methods in Group Theory. Amer. Math. Soc., Providence, RI, pp. 27-33 Zbl1079.20040MR2139674
  46. [46] Lyndon, R.C., Schupp, P.E. (1977) Combinatorial Group Theory. Springer, Berlin Zbl0368.20023MR577064
  47. [47] I. Lysenok, Some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 814-832, 912; transl. in Math. USSR-Izv., 35 (1990), 145-163. Zbl0697.20020MR1018749
  48. [48] G. S. Makanin, Decidability of the universal and positive theories of a free group (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 735-749; transl. in Math. USSR-Izv., 25 (1985), 75-88. Zbl0578.20001MR755956
  49. [49] Miller III, C.F. (1971) On Group Theoretic Decision Problems and Their Classification. Princeton University Press, Princeton Zbl0277.20054MR310044
  50. [50] Miller III, C.F. (1992) Decision problems for groups - survey and reflections. Algorithms and Classification in Combinatorial Group Theory (Berkeley, CA, 1989). Springer, New York, pp. 1-59 Zbl0752.20014MR1230627
  51. [51] Osin, D.V. (2006) Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems. Amer. Math. Soc., Providence, RI Zbl1093.20025MR2182268
  52. [52] P. Papasoglu, An algorithm detecting hyperbolicity, in Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 193-200. Zbl0857.20017MR1364185
  53. [53] Paulin, F. (1988) Topologie de Gromov équivariante, structures hyperbolique et arbres réels. Invent. Math. 94: pp. 53-80 Zbl0673.57034MR958589
  54. [54] Rabin, M.O. (1958) Recursive unsolvability of group theoretic problems. Ann. Math. 67: pp. 172-194 Zbl0079.24802MR110743
  55. [55] D. Rebbechi, Algorithmic Properties of Relatively Hyperbolic Groups, PhD Thesis, ArXiv math.GR/0302245. MR2701979
  56. [56] Rips, E., Sela, Z. (1995) Canonical representatives and equations in hyperbolic groups. Invent. Math. 120: pp. 489-512 Zbl0845.57002MR1334482
  57. [57] Rips, E., Sela, Z. (1997) Cyclic splittings of finitely presented groups and the canonical JSJ decomposition. Ann. Math. (2) 146: pp. 53-104 Zbl0910.57002MR1469317
  58. [58] V. Roman’kov, Universal theory of nilpotent groups, Mat. Zametki, 25 (1979), 487-495, 635. Zbl0419.20031MR534291
  59. [59] Segal, D. (1990) Decidable properties of polycyclic groups. Proc. Lond. Math. Soc., III. Ser. 61: pp. 497-528 Zbl0674.20020MR1069513
  60. [60] Sela, Z. (1995) The isomorphism problem for hyperbolic groups I. Ann. Math. (2) 141: pp. 217-283 Zbl0868.57005MR1324134
  61. [61] Sela, Z. (1997) Acylindrical accessibility for groups. Invent. Math. 129: pp. 527-565 Zbl0887.20017MR1465334
  62. [62] Sela, Z. (1997) Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II. Geom. Funct. Anal. 7: pp. 561-593 Zbl0884.20025MR1466338
  63. [63] Sela, Z. (2003) Diophantine geometry over groups, I: Makanin-Razborov diagrams. Publ. Math., Inst. Hautes Étud. Sci. 93: pp. 31-105 Zbl1018.20034MR1863735
  64. [64] Sela, Z. (2006) Diophantine geometry over groups, VI: The elementary theory of a free group. Geom. Funct. Anal. 16: pp. 707-730 Zbl1118.20035MR2238945
  65. [65] Z. Sela, Diophantine Geometry over Groups, VIII: Elementary Theory of Hyperbolic Groups, preprint (2002). Zbl1285.20042MR1957023
  66. [66] Serre, J.-P. (1980) Trees. Springer, Berlin MR607504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.