The isomorphism problem for toral relatively hyperbolic groups
François Dahmani; Daniel Groves
Publications Mathématiques de l'IHÉS (2008)
- Volume: 107, page 211-290
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topDahmani, François, and Groves, Daniel. "The isomorphism problem for toral relatively hyperbolic groups." Publications Mathématiques de l'IHÉS 107 (2008): 211-290. <http://eudml.org/doc/273597>.
@article{Dahmani2008,
abstract = {We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic $n$-manifolds, for $n\ge 3$. In the course of the proof of the main result, we prove that a particular JSJ decomposition of a freely indecomposable torsion-free relatively hyperbolic group with abelian parabolics is algorithmically constructible.},
author = {Dahmani, François, Groves, Daniel},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {isomorphism problem; relatively hyperbolic groups; hyperbolic manifolds; finitely presented groups; parabolic subgroups; torsionfree hyperbolic groups; limit groups; algorithms; JSJ decompositions},
language = {eng},
pages = {211-290},
publisher = {Institut des hautes études scientifiques},
title = {The isomorphism problem for toral relatively hyperbolic groups},
url = {http://eudml.org/doc/273597},
volume = {107},
year = {2008},
}
TY - JOUR
AU - Dahmani, François
AU - Groves, Daniel
TI - The isomorphism problem for toral relatively hyperbolic groups
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 211
EP - 290
AB - We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic $n$-manifolds, for $n\ge 3$. In the course of the proof of the main result, we prove that a particular JSJ decomposition of a freely indecomposable torsion-free relatively hyperbolic group with abelian parabolics is algorithmically constructible.
LA - eng
KW - isomorphism problem; relatively hyperbolic groups; hyperbolic manifolds; finitely presented groups; parabolic subgroups; torsionfree hyperbolic groups; limit groups; algorithms; JSJ decompositions
UR - http://eudml.org/doc/273597
ER -
References
top- [1] Adian, S.I. (1957) The unsolvability of certain algorithmic problems in the theory of groups. Trudy Moskov. Obsc. 6: pp. 231-298 MR95872
- [2] Alibegović, E. (2005) A combination theorem for relatively hyperbolic groups. Bull. Lond. Math. Soc. 37: pp. 459-466 Zbl1074.57001MR2131400
- [3] Baumslag, G., Gildenhuys, D., Strebel, R. (1986) Algorithmically insoluble problems about finitely presented soluble groups, Lie and associative algebras, I. J. Pure Appl. Algebra 39: pp. 53-94 Zbl0577.20021MR816890
- [4] Belegradek, I. (2007) Aspherical manifolds with relatively hyperbolic fundamental groups. Geom. Dedicata 129: pp. 119-144 Zbl1139.20036MR2353987
- [5] Bestvina, M. (1988) Degenerations of hyperbolic space. Duke Math. J. 56: pp. 143-161 Zbl0652.57009MR932860
- [6] Bestvina, M., Feighn, M. (1991) Bounding the complexity of simplicial group actions. Invent. Math. 103: pp. 449-469 Zbl0724.20019MR1091614
- [7] Bestvina, M., Feighn, M. (1995) Stable actions of groups on real trees. Invent. Math. 121: pp. 287-321 Zbl0837.20047MR1346208
- [8] Bowditch, B.H. (1998) Cut points and canonical splittings of hyperbolic groups. Acta Math. 180: pp. 145-186 Zbl0911.57001MR1638764
- [9] B. H. Bowditch, Relatively Hyperbolic Groups, preprint (1999). Zbl1259.20052MR2922380
- [10] Bowditch, B.H. (2001) Peripheral splittings of groups. Trans. Amer. Math. Soc. 353: pp. 4057-4082 Zbl1037.20041MR1837220
- [11] Bridson, M.R., Swarup, G.A. (1994) On Hausdorff-Gromov convergence and a theorem of Paulin. Enseign. Math. 40: pp. 267-289 Zbl0846.20038MR1309129
- [12] Brown, K.S. (1982) Cohomology of Groups. Springer, New York, Berlin Zbl0584.20036MR672956
- [13] Bumagin, I. (2004) The conjugacy problem for relatively hyperbolic groups. Algebr. Geom. Topol. 4: pp. 1013-1040 Zbl1111.20035MR2100689
- [14] Bumagin, I., Kharlampovich, O., Miasnikov, A. (2007) Isomorphism problem for finitely generated fully residually free groups. J. Pure Appl. Algebra 208: pp. 961-977 Zbl1121.20026MR2283438
- [15] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Les groupes hyperboliques de M. Gromov, Lect. Notes Math., vol. 1441, Springer, Berlin, 1991. Zbl0727.20018
- [16] F. Dahmani, Les groupes relativement hyperboliques et leurs bords, PhD Thesis, Strasbourg (2003) MR2105643
- [17] Dahmani, F. (2003) Combination of convergence groups. Geom. Topol. 7: pp. 933-963 Zbl1037.20042MR2026551
- [18] Dahmani, F. (2008) Finding relative hyperbolic structures. Bull. Lond. Math. Soc. 40: pp. 395-404 Zbl1166.20034MR2418795
- [19] F. Dahmani, Existential questions in (relatively) hyperbolic groups, Isr. J. Math., to appear. Zbl1189.20034MR2570661
- [20] F. Dahmani and D. Groves, Detecting free splittings in relatively hyperbolic groups, Trans. Amer. Math. Soc., to appear. Zbl1196.20050MR2434288
- [21] Dehn, M. (1912) Über unendliche diskontinuierliche Gruppen. Math. Ann. 71: pp. 413-421 Zbl42.0508.03MR1511705JFM42.0508.03
- [22] Dehn, M. (1987) Papers on Group Theory and Topology, Translated from the German and with Introductions and an Appendix by John Stillwell, with an Appendix by Otto Schreier. Springer, New York MR881797
- [23] Diekert, V., Gutiérrez, C., Hagenah, C. (2005) The existential theory of equations with rational constraints in free groups is PSPACE-complete. Inform. Comput. 202: pp. 105-140 Zbl1101.68649MR2172984
- [24] V. Diekert and A. Muscholl, Solvability of equations in free partially commutative groups is decidable, in Automata, Languages and Programming, Lect. Notes Comput. Sci., vol. 2076, Springer, 2001, pp. 543-554. Zbl0986.20036MR2066532
- [25] Druţu, C., Sapir, M. (2005) Tree-graded spaces and asymptotic cones of groups. Topology 44: pp. 959-1058 Zbl1101.20025MR2153979
- [26] Druţu, C., Sapir, M. (2007) Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups. Adv. Math. 217: pp. 1313-1367 Zbl1138.20024MR2383901
- [27] Dunwoody, M., Sageev, M. (1999) JSJ-splittings for finitely presented groups over slender groups. Invent. Math. 135: pp. 25-44 Zbl0939.20047MR1664694
- [28] Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W. (1992) Word Processing in Groups. Jones and Bartlett, Boston Zbl0764.20017MR1161694
- [29] Farb, B. (1998) Relatively hyperbolic groups. Geom. Funct. Anal. 8: pp. 810-840 Zbl0985.20027MR1650094
- [30] Forester, M. (2003) On uniqueness of JSJ decompositions of finitely generated groups. Comment. Math. Helv. 78: pp. 740-751 Zbl1040.20032MR2016693
- [31] Fujiwara, K., Papasoglu, P. (2006) JSJ decompositions of finitely presented groups and complexes of groups. Geom. Funct. Anal. 16: pp. 70-125 Zbl1097.20037MR2221253
- [32] V. Gerasimov, Detecting connectedness of the boundary of a hyperbolic group, preprint.
- [33] Grigorchuk, R., Lysenok, I. (1992) A description of solutions of quadratic equations in hyperbolic groups. Int. J. Algebra Comput. 2: pp. 237-274 Zbl0762.20014MR1189234
- [34] M. Gromov, Hyperbolic groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. Zbl0634.20015MR919829
- [35] Groves, D. (2005) Limits of certain CAT(0) groups, I: Compactification. Algebr. Geom. Topol. 5: pp. 1325-1364 Zbl1085.20025MR2171812
- [36] D. Groves, Limit groups for relatively hyperbolic groups, I: The basic tools, preprint. Zbl1231.20038MR2530123
- [37] Groves, D. (2005) Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams. Geom. Topol. 9: pp. 2319-2358 Zbl1100.20032MR2209374
- [38] Grunewald, F., Segal, D. (1980) Some general algorithms. II. Nilpotent groups. Ann. Math. (2) 112: pp. 585-617 Zbl0457.20048MR595207
- [39] Guirardel, V. (2004) Limit groups and groups acting freely on R n -trees. Geom. Topol. 8: pp. 1427-1470 Zbl1114.20013MR2119301
- [40] Hruska, G.C., Kleiner, B. (2005) Hadamard spaces with isolated flats, with an appendix by the authors and Mohamad Hindawi. Geom. Topol. 9: pp. 1501-1538 Zbl1087.20034MR2175151
- [41] Hummel, C. (1998) Rank one lattices whose parabolic isometries have no rational part. Proc. Amer. Math. Soc. 126: pp. 2453-2458 Zbl0898.22005MR1443390
- [42] Kharlampovich, O., Miasnikov, A. (2005) Effective JSJ decompositions. Groups, Languages and Algorithms. Amer. Math. Soc., Providence, RI, pp. 87-212 Zbl1093.20019MR2159316
- [43] Kharlampovich, O., Miasnikov, A. (2006) Elementary theory of free non-abelian groups. J. Algebra 302: pp. 451-552 Zbl1110.03020MR2293770
- [44] Levitt, G. (2005) Automorphisms of hyperbolic groups and graphs of groups. Geom. Dedicata 114: pp. 49-70 Zbl1107.20030MR2174093
- [45] Levitt, G. (2005) Characterizing rigid simplicial actions on trees. Geometric Methods in Group Theory. Amer. Math. Soc., Providence, RI, pp. 27-33 Zbl1079.20040MR2139674
- [46] Lyndon, R.C., Schupp, P.E. (1977) Combinatorial Group Theory. Springer, Berlin Zbl0368.20023MR577064
- [47] I. Lysenok, Some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 814-832, 912; transl. in Math. USSR-Izv., 35 (1990), 145-163. Zbl0697.20020MR1018749
- [48] G. S. Makanin, Decidability of the universal and positive theories of a free group (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 735-749; transl. in Math. USSR-Izv., 25 (1985), 75-88. Zbl0578.20001MR755956
- [49] Miller III, C.F. (1971) On Group Theoretic Decision Problems and Their Classification. Princeton University Press, Princeton Zbl0277.20054MR310044
- [50] Miller III, C.F. (1992) Decision problems for groups - survey and reflections. Algorithms and Classification in Combinatorial Group Theory (Berkeley, CA, 1989). Springer, New York, pp. 1-59 Zbl0752.20014MR1230627
- [51] Osin, D.V. (2006) Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems. Amer. Math. Soc., Providence, RI Zbl1093.20025MR2182268
- [52] P. Papasoglu, An algorithm detecting hyperbolicity, in Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 193-200. Zbl0857.20017MR1364185
- [53] Paulin, F. (1988) Topologie de Gromov équivariante, structures hyperbolique et arbres réels. Invent. Math. 94: pp. 53-80 Zbl0673.57034MR958589
- [54] Rabin, M.O. (1958) Recursive unsolvability of group theoretic problems. Ann. Math. 67: pp. 172-194 Zbl0079.24802MR110743
- [55] D. Rebbechi, Algorithmic Properties of Relatively Hyperbolic Groups, PhD Thesis, ArXiv math.GR/0302245. MR2701979
- [56] Rips, E., Sela, Z. (1995) Canonical representatives and equations in hyperbolic groups. Invent. Math. 120: pp. 489-512 Zbl0845.57002MR1334482
- [57] Rips, E., Sela, Z. (1997) Cyclic splittings of finitely presented groups and the canonical JSJ decomposition. Ann. Math. (2) 146: pp. 53-104 Zbl0910.57002MR1469317
- [58] V. Roman’kov, Universal theory of nilpotent groups, Mat. Zametki, 25 (1979), 487-495, 635. Zbl0419.20031MR534291
- [59] Segal, D. (1990) Decidable properties of polycyclic groups. Proc. Lond. Math. Soc., III. Ser. 61: pp. 497-528 Zbl0674.20020MR1069513
- [60] Sela, Z. (1995) The isomorphism problem for hyperbolic groups I. Ann. Math. (2) 141: pp. 217-283 Zbl0868.57005MR1324134
- [61] Sela, Z. (1997) Acylindrical accessibility for groups. Invent. Math. 129: pp. 527-565 Zbl0887.20017MR1465334
- [62] Sela, Z. (1997) Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II. Geom. Funct. Anal. 7: pp. 561-593 Zbl0884.20025MR1466338
- [63] Sela, Z. (2003) Diophantine geometry over groups, I: Makanin-Razborov diagrams. Publ. Math., Inst. Hautes Étud. Sci. 93: pp. 31-105 Zbl1018.20034MR1863735
- [64] Sela, Z. (2006) Diophantine geometry over groups, VI: The elementary theory of a free group. Geom. Funct. Anal. 16: pp. 707-730 Zbl1118.20035MR2238945
- [65] Z. Sela, Diophantine Geometry over Groups, VIII: Elementary Theory of Hyperbolic Groups, preprint (2002). Zbl1285.20042MR1957023
- [66] Serre, J.-P. (1980) Trees. Springer, Berlin MR607504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.