A generalized dual maximizer for the Monge–Kantorovich transport problem
Mathias Beiglböck; Christian Léonard; Walter Schachermayer
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 306-323
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBeiglböck, Mathias, Léonard, Christian, and Schachermayer, Walter. "A generalized dual maximizer for the Monge–Kantorovich transport problem." ESAIM: Probability and Statistics 16 (2012): 306-323. <http://eudml.org/doc/273608>.
@article{Beiglböck2012,
abstract = {The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.},
author = {Beiglböck, Mathias, Léonard, Christian, Schachermayer, Walter},
journal = {ESAIM: Probability and Statistics},
keywords = {optimal transport; duality in function spaces; Fenchel’s perturbation technique; Fenchel's perturbation technique},
language = {eng},
pages = {306-323},
publisher = {EDP-Sciences},
title = {A generalized dual maximizer for the Monge–Kantorovich transport problem},
url = {http://eudml.org/doc/273608},
volume = {16},
year = {2012},
}
TY - JOUR
AU - Beiglböck, Mathias
AU - Léonard, Christian
AU - Schachermayer, Walter
TI - A generalized dual maximizer for the Monge–Kantorovich transport problem
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 306
EP - 323
AB - The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.
LA - eng
KW - optimal transport; duality in function spaces; Fenchel’s perturbation technique; Fenchel's perturbation technique
UR - http://eudml.org/doc/273608
ER -
References
top- [1] J. Aaronson, An introduction to infinite ergodic theory, in Math. Surveys Monogr., Amer. Math. Soc. Providence, RI 50 (1997). Zbl0882.28013MR1450400
- [2] J. Aaronson and M. Keane, The visits to zero of some deterministic random walks. Proc. London Math. Soc.44 (1982) 535–553. Zbl0489.60006MR656248
- [3] L. Ambrosio and A. Pratelli, Existence and stability results in the L1-theory of optimal transportation, CIME Course Lect. Notes Math.1813 (2003) 123–160. Zbl1065.49026MR2006307
- [4] M. Beiglböck, M. Goldstern, G. Maresh and W. Schachermayer, Optimal and better transport plans. J. Funct. Anal.256 (2009) 1907–1927. Zbl1157.49019MR2498564
- [5] M. Beiglböck, C. Léonard and W. Schachermayer, A general duality theorem for the Monge–Kantorovich transport problem. Submitted (2009). Zbl1270.49045
- [6] M. Beiglböck, C. Léonard and W. Schachermayer, On the duality of the Monge–Kantorovich transport problem, in Summer school on optimal transport. Séminaires et Congrès, Société Mathématique de France, Institut Fourier, Grenoble (2009) Zbl1333.49064
- [7] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math.44 (1991) 375–417. Zbl0738.46011MR1100809
- [8] M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans. Amer. Math. Soc.363 (2011) 4203–4224. Zbl1228.49046MR2792985
- [9] Probabilités, I (Univ. Rennes, Rennes, 1976). Exp. No. 5, Dépt. Math. Informat., Univ. Rennes, Rennes (1976) 7.
- [10] L. Cafarelli and R.J. McCann, Free boundaries in optimal transport and Monge–Ampere obstacle problems. Ann. of Math.171 (2010) 673–730. Zbl1196.35231MR2630054
- [11] A. de Acosta, Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab.10 (1982) 346–373. Zbl0499.60009MR647509
- [12] L. Decreusefond, Wasserstein distance on configuration space. Potential Anal.28 (2008) 283–300. Zbl1144.60004MR2386101
- [13] L. Decreusefond, A. Joulin and N. Savy, Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stochastic Anal.4 (2010) 377–399. Zbl1331.60083MR2677197
- [14] R.M. Dudley, Probabilities and metrics, Convergence of laws on metric spaces, with a view to statistical testing, No. 45. Matematisk Institut, Aarhus Universitet, Aarhus. Lect. Notes Ser. (1976). Zbl0355.60004MR488202
- [15] R.M. Dudley, Real analysis and probability, Cambridge University Press, Cambridge. Cambridge Studies in Adv. Math. 74 (2002). Revised reprint of the 1989 original. Zbl1023.60001MR1932358
- [16] X. Fernique, Sur le théorème de Kantorovich-Rubinstein dans les espaces polonais in Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lect. Notes Math. 850 (1981) 6–10. Zbl0461.60016MR622552
- [17] A. Figalli, The optimal partial transport problem. Arch. Rational Mech. Anal.195 (2010) 533–560. Zbl1245.49059MR2592287
- [18] D. Feyel and A.S. Üstünel, Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris334 (2002) 1025–1028. Zbl1036.60004MR1913729
- [19] D. Feyel and A.S. Üstünel, Monge-Kantorovitch measure transportation and Monge–Ampère equation on Wiener space. Probab. Theory Relat. Fields128 (2004) 347–385. Zbl1055.60052MR2036490
- [20] D. Feyel and A.S. Üstünel, Monge-Kantorovitch measure transportation, Monge–Ampère equation and the Itô calculus, in Stochastic analysis and related topics in Kyoto. Adv. Stud. Pure Math. Math. Soc. Japan 41 (2004) 49–74. Zbl1064.60124
- [21] D. Feyel and A.S. Üstünel, Solution of the Monge-Ampère equation on Wiener space for general log-concave measures. J. Funct. Anal.232 (2006) 29–55. Zbl1099.60042MR2200166
- [22] N. Gaffke and L. Rüschendorf, On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim.12 (1981) 123–135. Zbl0467.60004MR609133
- [23] W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math.177 (1996) 113–161. Zbl0887.49017MR1440931
- [24] L.V. Kantorovich, On the translocation of masses. C. R. (Dokl.) Acad. Sci. URSS 37 (1942) 199–201. Zbl0061.09705MR9619
- [25] L.V. Kantorovič and G.Š. Rubinšteĭn, On a space of completely additive functions. Vestnik Leningrad. Univ.13 (1958) 52–59. Zbl0082.11001
- [26] H. Kellerer, Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheorie Verw. Gebiete67 (1984) 399–432. Zbl0535.60002MR761565
- [27] C. Léonard, A saddle-point approach to the Monge–Kantorovich transport problem. ESAIM : COCV 17 (2011) 682–704. Zbl1234.46058MR2826975
- [28] R. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J.80 (1995) 309–323. Zbl0873.28009MR1369395
- [29] T. Mikami, A simple proof of duality theorem for Monge–Kantorovich problem. Kodai Math. J.29 (2006) 1–4. Zbl1113.49039MR2222161
- [30] T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem. Stoch. Proc. Appl.116 (2006) 1815–1835. Zbl1118.93056MR2307060
- [31] D. Ramachandran and L. Rüschendorf, A general duality theorem for marginal problems. Probab. Theory Relat. Fields101 (1995) 311–319. Zbl0818.60001MR1324088
- [32] D. Ramachandran and L. Rüschendorf, Duality and perfect probability spaces. Proc. Amer. Math. Soc.124 (1996) 2223–2228. Zbl0863.60005MR1342043
- [33] M. Reed and B. Simon, Methods of Modern Mathematical Physics, I : Functional Analysis. Academic Press (1980). Zbl0459.46001MR751959
- [34] L. Rüschendorf, On c-optimal random variables. Stat. Probab. Lett.27 (1996) 267–270. Zbl0847.62046MR1395577
- [35] K. Schmidt, A cylinder flow arising from irregularity of distribution. Compositio Math.36 (1978) 225–232. Zbl0388.28019MR515047
- [36] W. Schachermayer and J. Teichman, Characterization of optimal transport plans for the Monge–Kantorovich problem. Proc. Amer. Math. Soc.137 (2009) 519–529. Zbl1165.49015MR2448572
- [37] A. Szulga, On minimal metrics in the space of random variables. Teor. Veroyatnost. i Primenen.27 (1982) 401–405. Zbl0493.60016MR657942
- [38] A.S. Üstünel, A necessary, and sufficient condition for invertibility of adapted perturbations of identity on Wiener space. C. R. Acad. Sci. Paris, Ser. I 346 (2008) 897–900. Zbl1148.60033
- [39] A.S. Üstünel and M. Zakai, Sufficient conditions for the invertibility of adapted perturbations of identity on the Wiener space. Probab. Theory Relat. Fields139 (2007) 207–234. Zbl1120.60057MR2322696
- [40] C. Villani, Topics in Optimal Transportation, in Graduate Studies in Mathematics. Amer. Math. Soc., Providence RI 58 (2003). Zbl1106.90001MR1964483
- [41] C. Villani, Optimal Transport, Old and New, in Grundlehren der mathematischen Wissenschaften. Springer 338 (2009). Zbl1156.53003MR2459454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.