Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion
Shota Gugushvili; Peter Spreij
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 332-341
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topGugushvili, Shota, and Spreij, Peter. "Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion." ESAIM: Probability and Statistics 18 (2014): 332-341. <http://eudml.org/doc/273643>.
@article{Gugushvili2014,
abstract = {We establish posterior consistency for non-parametric Bayesian estimation of the dispersion coefficient of a time-inhomogeneous Brownian motion.},
author = {Gugushvili, Shota, Spreij, Peter},
journal = {ESAIM: Probability and Statistics},
keywords = {dispersion coefficient; non-parametric bayesian estimation; posterior consistency; time-inhomogeneous brownian motion; nonparametric Bayesian estimation; time-inhomogeneous Brownian motion},
language = {eng},
pages = {332-341},
publisher = {EDP-Sciences},
title = {Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion},
url = {http://eudml.org/doc/273643},
volume = {18},
year = {2014},
}
TY - JOUR
AU - Gugushvili, Shota
AU - Spreij, Peter
TI - Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 332
EP - 341
AB - We establish posterior consistency for non-parametric Bayesian estimation of the dispersion coefficient of a time-inhomogeneous Brownian motion.
LA - eng
KW - dispersion coefficient; non-parametric bayesian estimation; posterior consistency; time-inhomogeneous brownian motion; nonparametric Bayesian estimation; time-inhomogeneous Brownian motion
UR - http://eudml.org/doc/273643
ER -
References
top- [1] A. Barron, M.J. Schervish and L. Wasserman, The consistency of posterior distributions in nonparametric problems. Ann. Statist.27 (1999) 536–561. Zbl0980.62039MR1714718
- [2] N. Choudhuri, S. Ghosal and A. Roy, Bayesian estimation of the spectral density of a time series. J. Amer. Statist. Assoc.99 (2004) 1050–1059. Zbl1055.62100MR2109494
- [3] P. Diaconis and D. Freedman, On the consistency of Bayes estimates. With a discussion and a rejoinder by the authors. Ann. Statist. 14 (1986) 1–67. Zbl0595.62022MR829555
- [4] V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Statist.29 (1993) 119–151. Zbl0770.62070MR1204521
- [5] V. Genon-Catalot, C. Laredo and D. Picard, Nonparametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist.19 (1992) 317–335. Zbl0776.62033MR1211787
- [6] S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi, Consistency issues in Bayesian nonparametrics. Asymptotics, Nonparametrics, and Time Series. Vol. 158 of Textbooks Monogr. Dekker, New York (1999) 639–667. Zbl1069.62516MR1724711
- [7] S. Ghosal and Y. Tang, Bayesian consistency for Markov processes. Sankhyā68 (2006) 227–239. Zbl1193.62035MR2303082
- [8] S. Gugushvili and P. Spreij, Non-parametric Bayesian drift estimation for stochastic differential equations (2012). Preprint arXiv:1206.4981 [math.ST]. Zbl1307.62094MR3212631
- [9] M. Hoffmann, Minimax estimation of the diffusion coefficient through irregular samplings. Statist. Probab. Lett.32 (1997) 11–24. Zbl0872.62080MR1439493
- [10] I.A. Ibragimov and R.Z. Has′minskiĭ, Asimptoticheskaya teoriya otsenivaniya [Asymptotic Theory of Estimation] (Russian). Nauka, Moscow (1979). Zbl0467.62025MR545339
- [11] F. van der Meulen, M. Schauer and H. van Zanten, Reversible jump MCMC for nonparametric drift estimation for diffusion processes. Comput. Statist. Data Anal. 71 (2014) 615–632. Available on http://dx.doi.org/10.1016/j.csda.2013.03.002. MR3131993
- [12] F.H. van der Meulen, A.W. van der Vaart and J.H. van Zanten, Convergence rates of posterior distributions for Brownian semimartingale models. Bernoulli12 (2006) 863–888. Zbl1142.62057MR2265666
- [13] F. van der Meulen and H. van Zanten, Consistent nonparametric Bayesian estimation for discretely observed scalar diffusions. Bernoulli19 (2013) 44–63. Zbl1259.62070MR3019485
- [14] L. Panzar and H. van Zanten, Nonparametric Bayesian inference for ergodic diffusions. J. Statist. Plann. Inference139 (2009) 4193–4199. Zbl1183.62144MR2558361
- [15] O. Papaspiliopoulos, Y. Pokern, G.O. Roberts and A.M. Stuart, Nonparametric estimation of diffusions: a differential equations approach. Biometrika99 (2012) 511–531. Zbl06085152MR2966767
- [16] G.A. Pavliotis, Y. Pokern and A.M. Stuart, Parameter estimation for multiscale diffusions: an overview. Statistical Methods for Stochastic Differential Equations. Vol. 124 of Monogr. Statist. Appl. Probab. CRC Press, Boca Raton, FL (2012) 429–472. Zbl06149704MR2976988
- [17] Y. Pokern, A.M. Stuart and J.H. van Zanten. Posterior consistency via precision operators for nonparametric drift estimation in SDEs. Stoch. Process. Appl.123 (2013) 603–628. Zbl1256.62047MR3003365
- [18] L. Schwartz, On Bayes procedures. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete4 (1965) 10–26. Zbl0158.17606MR184378
- [19] P. Soulier, Nonparametric estimation of the diffusion coefficient of a diffusion process. Stochastic Anal. Appl.16 (1998) 185–200. Zbl0894.62093MR1603904
- [20] A.W. van der Vaart, Asymptotic Statistics. Vol. 3 of Cambr. Ser. Stat. Probab. Math. Cambridge University Press, Cambridge (1998). Zbl0910.62001MR1652247
- [21] A.W. van der Vaart and J.H. van Zanten, Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 (2008a) 1435–1463. Zbl1141.60018MR2418663
- [22] A.W. van der Vaart and J.H. van Zanten, Reproducing kernel Hilbert spaces of Gaussian priors. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Vol. 3 of Inst. Math. Stat. Collect. Inst. Math. Statist., Beachwood, OH (2008) 200–222. MR2459226
- [23] S. Walker, On sufficient conditions for Bayesian consistency. Biometrika90 (2003) 482–488. Zbl1034.62024MR1986664
- [24] S. Walker, New approaches to Bayesian consistency. Ann. Statist.32 (2004) 2028–2043. Zbl1056.62040MR2102501
- [25] L. Wasserman, Asymptotic properties of nonparametric Bayesian procedures. Practical Nonparametric and Semiparametric Bayesian Statistics. Vol. 133 of Lect. Notes Statist. Springer, New York (1998) 293–304. Zbl0918.62045MR1630088
- [26] H. van Zanten, Nonparametric Bayesian methods for one-dimensional diffusion models. Math. Biosci. (2013). Available on http://dx.doi.org/10.1016/j.mbs.2013.03.008. Zbl1281.62179MR3065207
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.