Asymptotic normality and efficiency of two Sobol index estimators
Alexandre Janon; Thierry Klein; Agnès Lagnoux; Maëlle Nodet; Clémentine Prieur
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 342-364
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G.E.P. Box and N.R. Draper, Empirical model-building and response surfaces. John Wiley and Sons (1987). Zbl0614.62104MR861118
- [2] R. Carnell, lhs: Latin Hypercube Samples (2009). R package version 0.5.
- [3] W. Chen, R. Jin and A. Sudjianto, Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. Vol. 127 of Transactions-American Society Of Mechanical Engineers Journal Of Mechanical Design (2005).
- [4] R.I. Cukier, H.B. Levine and K.E. Shuler, Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys.26 (1978) 1–42. Zbl0369.65023MR465355
- [5] S. Da Veiga and F. Gamboa, Efficient estimation of sensitivity indices. J. Nonparametric Statist.25 (2013) 573–595. Zbl06231487MR3174285
- [6] G.M. Dancik, mlegp: Maximum Likelihood Estimates of Gaussian Processes (2011). R package version 3.1.2.
- [7] T. Hayfield and J.S. Racine, Nonparametric econometrics: The np package. J. Statist. Softw. 27 (2008). Zbl1183.62200
- [8] J.C. Helton, J.D. Johnson, C.J. Sallaberry and C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf.91 (2006) 1175–1209.
- [9] T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf.52 (1996) 1–17.
- [10] I.A. Ibragimov and R.Z. Has’ Minskii, Statistical estimation–asymptotic theory. Vol. 16 of Appl. Math. Springer−Verlag, New York (1981). Zbl0467.62026
- [11] T. Ishigami and T. Homma, An importance quantification technique in uncertainty analysis for computer models, in Proc. of First International Symposium on Uncertainty Modeling and Analysis, 1990. IEEE (1990) 398–403.
- [12] A. Janon, M. Nodet and C. Prieur, Certified reduced-basis solutions of viscous Burgers equations parametrized by initial and boundary values. ESAIM: M2AN 47 (2013) 317–348. Zbl1272.35016MR3021689
- [13] A. Janon, M. Nodet and C. Prieur, Uncertainties assessment in global sensitivity indices estimation from metamodels. Internat. J. Uncert. Quantification4 (2014) 21–36. MR3249675
- [14] W. Kahan, Pracniques: further remarks on reducing truncation errors. Commun. ACM 8 (1965) 40.
- [15] W.R. Madych and S.A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory70 (1992) 94–114. Zbl0764.41003MR1168377
- [16] A. Marrel, B. Iooss, B. Laurent and O. Roustant, Calculations of sobol indices for the gaussian process metamodel. Reliab. Eng. Syst. Saf.94 (2009) 742–751.
- [17] H. Monod, C. Naud and D. Makowski, Uncertainty and sensitivity analysis for crop models, in Chap. 4 of Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Edited by D. Wallach, D. Makowski and J. W. Jones. Elsevier (2006) 55–99.
- [18] V.I. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami and L.S. Davis, Automatic online tuning for fast gaussian summation, in Advances in Neural Information Processing Systems, NIPS (2008).
- [19] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Model. (2005) 1523–1558.
- [20] R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0.
- [21] J. Racine, An efficient cross-validation algorithm for window width selection for nonparametric kernel regression. Commun. Stat. Simul. Comput.22 (1993) 1107–1107.
- [22] A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester (2000). Zbl1152.62071MR1886391
- [23] A. Saltelli, S. Tarantola, F. Campolongo and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (2004). Zbl1049.62112MR2048817
- [24] T. J. Santner, B. Williams and W. Notz, The Design and Analysis of Computer Experiments. Springer−Verlag (2003). Zbl1041.62068MR2160708
- [25] R. Schaback, Mathematical results concerning kernel techniques. In Prep. 13th IFAC Symposium on System Identification, Rotterdam. Citeseer (2003) 1814–1819.
- [26] M. Scheuerer, R. Schaback and M. Schlather, Interpolation of spatial data – a stochastic or a deterministic problem? Universität Göttingen (2011) http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf. Zbl06248582
- [27] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Experiment 1 (1995) 407–414, 1993. Zbl1039.65505MR1335161
- [28] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul.55 (2001) 271–280. Zbl1005.65004MR1823119
- [29] C.B. Storlie, L.P. Swiler, J.C. Helton and C.J. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Saf.94 (2009) 1735–1763.
- [30] B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf.93 (2008) 964–979.
- [31] J.Y. Tissot and C. Prieur, A bias correction method for the estimation of sensitivity indices based on random balance designs. Reliab. Eng. Syst. Saf. (2010).
- [32] A.W. van der Vaart, Asymptotic statistics. Vol. 3 of Cambr. Series Statist. Probab. Math. Cambridge University Press, Cambridge (1998). Zbl0910.62001MR1652247