Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values

Alexandre Janon; Maëlle Nodet; Clémentine Prieur

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 2, page 317-348
  • ISSN: 0764-583X

Abstract

top
We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.

How to cite

top

Janon, Alexandre, Nodet, Maëlle, and Prieur, Clémentine. "Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.2 (2013): 317-348. <http://eudml.org/doc/273144>.

@article{Janon2013,
abstract = {We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.},
author = {Janon, Alexandre, Nodet, Maëlle, Prieur, Clémentine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {reduced-basis methods; parametrized pdes; nonlinear PDEs; Burgers equation; efficient approximate computation; numerical experiments},
language = {eng},
number = {2},
pages = {317-348},
publisher = {EDP-Sciences},
title = {Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values},
url = {http://eudml.org/doc/273144},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Janon, Alexandre
AU - Nodet, Maëlle
AU - Prieur, Clémentine
TI - Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 2
SP - 317
EP - 348
AB - We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.
LA - eng
KW - reduced-basis methods; parametrized pdes; nonlinear PDEs; Burgers equation; efficient approximate computation; numerical experiments
UR - http://eudml.org/doc/273144
ER -

References

top
  1. [1] ARPACK : Arnoldi Package, available on http://www.caam.rice.edu/software/ARPACK/. 
  2. [2] I. Babuska, The finite element method with penalty. Math. Comput.27 (1973) 221–228. Zbl0299.65057MR351118
  3. [3] J.W. Barrett and C.M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math.49 (1986) 343–366. Zbl0614.65116MR853660
  4. [4] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM : M2AN (2009). Zbl1272.65084
  5. [5] A. Chatterjee, An introduction to the proper orthogonal decomposition. Current Sci.78 (2000) 808–817. 
  6. [6] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Comput. Math. 5 (1986). Zbl0585.65077MR851383
  7. [7] GLPK : GNU Linear Programming Kit, available on http://www.gnu.org/software/glpk/. 
  8. [8] GOMP : An OpenMP implementation for GCC, available on http://gcc.gnu.org/projects/gomp/. 
  9. [9] M.A. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology (2005). 
  10. [10] M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM : M2AN 39 (2005) 157–181. Zbl1079.65096MR2136204
  11. [11] M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM : M2AN 41 (2007) 575–605. Zbl1142.65078MR2355712
  12. [12] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM : M2AN 42 (2008) 277–302. Zbl05262088MR2405149
  13. [13] J.C. Helton, J.D. Johnson, C.J. Sallaberry and C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety91 (2006) 1175–1209. 
  14. [14] E. Hopf, The partial differential equation ut + uux = μxx.Commun. Pure Appl. Math.3 (1950) 201–230. Zbl0039.10403MR47234
  15. [15] D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math.345 (2007) 473–478. Zbl1127.65086MR2367928
  16. [16] N. Jung, B. Haasdonk and D. Kroner, Reduced Basis Method for quadratically nonlinear transport equations. Int. J. Comput. Sci. Math.2 (2009) 334–353. Zbl1189.65225MR2606093
  17. [17] D.J. Knezevic and A.T. Patera, A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids : FENE dumbbells in extensional flow. SIAM J. Sci. Comput.32 (2010) 793–817. Zbl1226.82051MR2609340
  18. [18] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Mod. (2005) 1523–1558. 
  19. [19] N.C. Nguyen, G. Rozza and A.T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’s equation. Calcolo46 (2009) 157–185. Zbl1178.65109MR2533748
  20. [20] J. Nocedal and S.J. Wright, Numerical optimization. Springer-Verlag (1999). Zbl1104.65059MR1713114
  21. [21] A.M. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer (2008). Zbl1151.65339
  22. [22] D.V. Rovas, L. Machiels and Y. Maday, Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423. Zbl1101.65099MR2241309
  23. [23] A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley, New York (2000). Zbl1152.62071MR1886391
  24. [24] J.C. Strikwerda, Finite difference schemes and partial differential equations. Society for Industrial Mathematics (2004). Zbl1071.65118MR2124284
  25. [25] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids47 (2005) 773–788. Zbl1134.76326MR2123791
  26. [26] K. Veroy, C. Prud’homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation : rigorous a posteriori error bounds. C. R. Math.337 (2003) 619–624. Zbl1036.65075MR2017737

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.