Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values
Alexandre Janon; Maëlle Nodet; Clémentine Prieur
- Volume: 47, Issue: 2, page 317-348
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] ARPACK : Arnoldi Package, available on http://www.caam.rice.edu/software/ARPACK/.
- [2] I. Babuska, The finite element method with penalty. Math. Comput.27 (1973) 221–228. Zbl0299.65057MR351118
- [3] J.W. Barrett and C.M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math.49 (1986) 343–366. Zbl0614.65116MR853660
- [4] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM : M2AN (2009). Zbl1272.65084
- [5] A. Chatterjee, An introduction to the proper orthogonal decomposition. Current Sci.78 (2000) 808–817.
- [6] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Comput. Math. 5 (1986). Zbl0585.65077MR851383
- [7] GLPK : GNU Linear Programming Kit, available on http://www.gnu.org/software/glpk/.
- [8] GOMP : An OpenMP implementation for GCC, available on http://gcc.gnu.org/projects/gomp/.
- [9] M.A. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology (2005).
- [10] M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM : M2AN 39 (2005) 157–181. Zbl1079.65096MR2136204
- [11] M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM : M2AN 41 (2007) 575–605. Zbl1142.65078MR2355712
- [12] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM : M2AN 42 (2008) 277–302. Zbl05262088MR2405149
- [13] J.C. Helton, J.D. Johnson, C.J. Sallaberry and C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety91 (2006) 1175–1209.
- [14] E. Hopf, The partial differential equation ut + uux = μxx.Commun. Pure Appl. Math.3 (1950) 201–230. Zbl0039.10403MR47234
- [15] D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math.345 (2007) 473–478. Zbl1127.65086MR2367928
- [16] N. Jung, B. Haasdonk and D. Kroner, Reduced Basis Method for quadratically nonlinear transport equations. Int. J. Comput. Sci. Math.2 (2009) 334–353. Zbl1189.65225MR2606093
- [17] D.J. Knezevic and A.T. Patera, A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids : FENE dumbbells in extensional flow. SIAM J. Sci. Comput.32 (2010) 793–817. Zbl1226.82051MR2609340
- [18] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Mod. (2005) 1523–1558.
- [19] N.C. Nguyen, G. Rozza and A.T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’s equation. Calcolo46 (2009) 157–185. Zbl1178.65109MR2533748
- [20] J. Nocedal and S.J. Wright, Numerical optimization. Springer-Verlag (1999). Zbl1104.65059MR1713114
- [21] A.M. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer (2008). Zbl1151.65339
- [22] D.V. Rovas, L. Machiels and Y. Maday, Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423. Zbl1101.65099MR2241309
- [23] A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley, New York (2000). Zbl1152.62071MR1886391
- [24] J.C. Strikwerda, Finite difference schemes and partial differential equations. Society for Industrial Mathematics (2004). Zbl1071.65118MR2124284
- [25] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids47 (2005) 773–788. Zbl1134.76326MR2123791
- [26] K. Veroy, C. Prud’homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation : rigorous a posteriori error bounds. C. R. Math.337 (2003) 619–624. Zbl1036.65075MR2017737