Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes
M. Clausel; F. Roueff; M. S. Taqqu; C. Tudor
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 42-76
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Abry and V. Pipiras, Wavelet-based synthesis of the Rosenblatt process. Eurasip Signal Processing86 (2006) 2326–2339. Zbl1172.94348
- [2] P. Abry and D. Veitch, Wavelet analysis of long–range-dependent traffic. IEEE Trans. Inform. Theory44 (1998) 2–15. Zbl0905.94006MR1486645
- [3] P. Abry, D. Veitch and P. Flandrin, Long-range dependence: revisiting aggregation with wavelets. J. Time Ser. Anal. 19 (1998) 253–266. ISSN 0143-9782. Zbl0910.62080MR1626734
- [4] P. Abry, Helgason H. and V. Pipiras, Wavelet-based analysis of non-Gaussian long–range dependent processes and estimation of the Hurst parameter. Lithuanian Math. J.51 (2011) 287–302. Zbl1294.62185MR2832225
- [5] J.-M. Bardet, Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inform. Theory48 (2002) 991–999. Zbl1061.60036MR1908463
- [6] J.-M. Bardet and C.A. Tudor, A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stochastic Process. Appl.120 (2010) 2331–2362. Zbl1203.60043MR2728168
- [7] J.-M. Bardet, G. Lang, E. Moulines and P. Soulier, Wavelet estimator of long–range dependent processes. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). Stat. Inference Stoch. Process. 3 (2000) 85–99. Zbl1054.62579MR1819288
- [8] J.M. Bardet, H. Bibi and A. Jouini, Adaptive wavelet based estimator of the memory parameter for stationary gaussian processes. Bernoulli14 (2008) 691–724. Zbl1155.62060MR2537808
- [9] J.-C. Breton and I. Nourdin, Error bounds on the non-normal approximation of hermite power variations of fractional brownian motion. Electron. Commun. Probab.13 (2008) 482–493. Zbl1189.60084MR2447835
- [10] A. Chronopoulou, C. Tudor and F. Viens, Self-similarity parameter estimation and reproduction property for non-gaussian Hermite processes. Commun. Stoch. Anal.5 (2011) 161–185. Zbl1331.62098MR2808541
- [11] M. Clausel, F. Roueff, M.S. Taqqu and C. Tudor, Large scale behavior of wavelet coefficients of non-linear subordinated processes with long memory. Appl. Comput. Harmonic Anal.32 (2012) 223–241. Zbl1244.60044MR2880280
- [12] M. Clausel, F. Roueff, M.S. Taqqu and C. Tudor, High order chaotic limits of wavelet scalograms under long–range dependence. Technical report, Hal–Institut Telecom (2012). http://hal-institut-telecom.archives-ouvertes.fr/hal-00662317. Zbl1280.42031MR3151747
- [13] R.L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete50 (1979) 27–52. Zbl0397.60034MR550122
- [14] P. Embrechts and M. Maejima, Selfsimilar processes. Princeton University Press, Princeton, New York (2002). Zbl1008.60003MR1920153
- [15] P. Flandrin, On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory IT-35 (1989) 197–199. MR995341
- [16] P. Flandrin, Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods. Edited by J.M. Combes, A. Grossman and Ph. Tchamitchian, Wavelets. Springer-Verlag (1989) 68–98. Zbl0825.94095MR1010899
- [17] P. Flandrin, Fractional Brownian motion and wavelets. Edited by M. Farge, J.C.R. Hung and J.C. Vassilicos, Fractals and Fourier Transforms-New Developments and New Applications. Oxford University Press (1991). Zbl0826.60032MR1265966
- [18] P. Flandrin, Time-Frequency/Time-scale Analysis, 1st edition. Academic Press (1999). Zbl0954.94003MR1681043
- [19] R. Fox and M.S. Taqqu. Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist.14 (1986) 517–532. Zbl0606.62096MR840512
- [20] L. Giraitis and D. Surgailis, Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1985) 191–212. Zbl0575.60024MR799146
- [21] L. Giraitis and M.S. Taqqu, Whittle estimator for finite-variance non-gaussian time series with long memory. Ann. Statist.27 (1999) 178–203. Zbl0945.62085MR1701107
- [22] A.J. Lawrance and N.T. Kottegoda, Stochastic modelling of riverflow time series. J. Roy. Statist. Soc. Ser. A140 (1977) 1–47.
- [23] P. Major, Multiple Wiener-Itô integrals, vol. 849 of Lect. Notes Math. Springer, Berlin (1981). Zbl0451.60002MR611334
- [24] E. Moulines, F. Roueff and M.S. Taqqu, On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. J. Time Ser. Anal.28 (2007) 155–187. Zbl1150.62058MR2345656
- [25] I. Nourdin and G. Peccati, Stein’s method meets Malliavin calculus: a short survey with new estimates. Technical report, Recent Advances in Stochastic Dynamics and Stochastic Analysis 8 (2010) 207–236. Zbl1203.60065MR2807823
- [26] I. Nourdin and G. Peccati, Stein’s method on wiener chaos. Probability Theory and Related Fields154 (2009) 75–118. Zbl1175.60053MR2520122
- [27] D. Nualart, The Malliavin Calculus and Related Topics. Springer (2006). Zbl1099.60003MR2200233
- [28] P.M. Robinson, Log-periodogram regression of time series with long range dependence. Ann. Statist.23 (1995) 1048–1072. Zbl0838.62085MR1345214
- [29] P.M. Robinson, Gaussian semiparametric estimation of long range dependence. Ann. Statist.23 (1995) 1630–1661. Zbl0843.62092MR1370301
- [30] F. Roueff and M. S. Taqqu, Central limit theorems for arrays of decimated linear processes. Stoch. Proc. Appl.119 (2009) 3006–3041. Zbl1173.60311MR2554037
- [31] F. Roueff and M.S. Taqqu, Asymptotic normality of wavelet estimators of the memory parameter for linear processes. J. Time Ser. Anal.30 (2009) 534–558. Zbl1224.62068MR2560417
- [32] A. Scherrer, Analyses statistiques des communications sur puce. Ph.D. thesis, École normale supérieure de Lyon (2006). Available on http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2006/PhD2006-09.pdf.
- [33] M.S. Taqqu, A representation for self-similar processes. Stoch. Proc. Appl.7 (1978) 55–64. Zbl0373.60048MR492691
- [34] M.S. Taqqu, Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1979) 191–212. Zbl0575.60024
- [35] G.W. Wornell and A.V. Oppenheim, Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process.40 (1992) 611–623.