A generalized mean-reverting equation and applications
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 799-828
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topMarie, Nicolas. "A generalized mean-reverting equation and applications." ESAIM: Probability and Statistics 18 (2014): 799-828. <http://eudml.org/doc/273652>.
@article{Marie2014,
abstract = {Consider a mean-reverting equation, generalized in the sense it is driven by a 1-dimensional centered Gaussian process with Hölder continuous paths on [0,T] (T> 0). Taking that equation in rough paths sense only gives local existence of the solution because the non-explosion condition is not satisfied in general. Under natural assumptions, by using specific methods, we show the global existence and uniqueness of the solution, its integrability, the continuity and differentiability of the associated Itô map, and we provide an Lp-converging approximation with a rate of convergence (p ≫ 1). The regularity of the Itô map ensures a large deviation principle, and the existence of a density with respect to Lebesgue’s measure, for the solution of that generalized mean-reverting equation. Finally, we study a generalized mean-reverting pharmacokinetic model.},
author = {Marie, Nicolas},
journal = {ESAIM: Probability and Statistics},
keywords = {stochastic differential equations; rough paths; large deviation principle; mean-reversion; gaussian processes; Gaussian processes},
language = {eng},
pages = {799-828},
publisher = {EDP-Sciences},
title = {A generalized mean-reverting equation and applications},
url = {http://eudml.org/doc/273652},
volume = {18},
year = {2014},
}
TY - JOUR
AU - Marie, Nicolas
TI - A generalized mean-reverting equation and applications
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 799
EP - 828
AB - Consider a mean-reverting equation, generalized in the sense it is driven by a 1-dimensional centered Gaussian process with Hölder continuous paths on [0,T] (T> 0). Taking that equation in rough paths sense only gives local existence of the solution because the non-explosion condition is not satisfied in general. Under natural assumptions, by using specific methods, we show the global existence and uniqueness of the solution, its integrability, the continuity and differentiability of the associated Itô map, and we provide an Lp-converging approximation with a rate of convergence (p ≫ 1). The regularity of the Itô map ensures a large deviation principle, and the existence of a density with respect to Lebesgue’s measure, for the solution of that generalized mean-reverting equation. Finally, we study a generalized mean-reverting pharmacokinetic model.
LA - eng
KW - stochastic differential equations; rough paths; large deviation principle; mean-reversion; gaussian processes; Gaussian processes
UR - http://eudml.org/doc/273652
ER -
References
top- [1] R.J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Inst. Math. Stat., Lect. Notes Monogr. Vol. 38, Ser. 12 (1990). Zbl0747.60039MR1088478
- [2] L. Coutin, Rough Paths via Sewing Lemma. ESAIM: PS 16 (2012) 479–526. Zbl1277.47081
- [3] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. Springer-Verlag, New-York (1998). Zbl0896.60013MR1619036
- [4] M. Delattre and M. Lavielle, Pharmacokinetics and Stochastic Differential Equations: Model and Methodology. Annual Meeting of the Population Approach Group in Europe (2011).
- [5] H. Doss, Liens entre équations différentielles stochastiques et ordinaires. C.R. Acad. Sci. Paris Ser. A-B 283 (1976) A939–A942. Zbl0352.60044MR426152
- [6] J. Feng, J.-P. Fouque and R. Kumar, Small-Time Asymptotics for Fast Mean-Reverting Stochastic Volatility Models (2010). Preprint arXiv:1009.2782. Zbl1266.60049MR2985169
- [7] E. Fournié, J.-M. Lasry, J. Lebuchoux, P.-L. Lions and N. Touzi, Applications of Malliavin Calculus to Monte-Carlo Methods in Finance. Finance Stoch.3 (1999) 391–412. Zbl0947.60066MR1842285
- [8] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Vols 120 of Camb. Stud. Appl. Math. Cambridge University Press, Cambridge (2010). Zbl1193.60053MR2604669
- [9] Y. Jacomet, Pharmacocinétique. Cours et Exercices. Université de Nice, U.E.R. de Médecine, Service de pharmacologie expérimentale et clinique, Ellipses (1989).
- [10] S. Karlin and H.M. Taylor, A Second Course in Stochastic Processes. Academic Press Inc., Harcourt Brace Jovanovich Publishers (1981). Zbl0469.60001MR611513
- [11] K. Kalogeropoulos, N. Demiris and O. Papaspiliopoulos, Diffusion-driven Models for Physiological Processes. Int. Workshop on Appl. Probab. IWAP (2008).
- [12] M. Ledoux, Isoperimetry and Gaussian Analysis. Ecole d’été de probabilité de Stain-Flour (1994). Zbl0874.60005
- [13] A. Lejay, Controlled Differential Equations as Young Integrals: A Simple Approach. J. Differ. Eqs.248 (2010) 1777–1798. Zbl1216.34058MR2679003
- [14] T. Lyons and Z. Qian, System Control and Rough Paths. Oxford University Press (2002). Zbl1029.93001MR2036784
- [15] F. Malrieu, Convergence to Equilibrium for Granular Media Equations and their Euler Schemes. Ann. Appl. Probab.13 (2003) 540–560. Zbl1031.60085MR1970276
- [16] F. Malrieu and D. Talay, Concentration Inequalities for Euler Schemes. Springer-Verlag (2006) 355–371. Zbl1097.65012MR2208718
- [17] X. Mao, A. Truman and C. Yuan, Euler-Maruyama Approximations in Mean-Reverting Stochastic Volatility Model under Regime-Switching. J. Appl. Math. Stoch. Anal. (2006). Zbl1147.60320MR2237177
- [18] N. Marie, Sensitivities via Rough Paths (2011). Preprint arXiv:1108.0852. Zbl1333.60126
- [19] J. Neveu, Processus aléatoires gaussiens. Presses de l’Université de Montréal (1968). Zbl0192.54701MR272042
- [20] D. Nualart, The Malliavin Calculus and Related Topics. Second Edition. Probab. Appl. Springer (2006). Zbl0837.60050MR2200233
- [21] N. Tien Dung, Fractional Geometric Mean Reversion Processes. J. Math. Anal. Appl.330 (2011) 396–402. Zbl1215.60030MR2786210
- [22] M. Sanz-Solé and I. Torrecilla-Tarantino, A Large Deviation Principle in Hölder Norm for Multiple Fractional Integrals. (2007). Preprint arXiv:0702049. MR2339298
- [23] N. Simon, Pharmacocinétique de population. Collection Pharmacologie médicale, Solal (2006).
- [24] H.J. Sussman, On the Gap between Deterministic and Stochastic Ordinary Differential Equations. Ann. Probab.6 (1978) 19–41. Zbl0391.60056MR461664
- [25] F. Wu, X. Mao and K. Chen, A Highly Sensitive Mean-Reverting Process in Finance and the Euler-Maruyama Approximations. J. Math. Anal. Appl.348 (2008) 540–554. Zbl1158.60033MR2449373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.