Rough paths via sewing Lemma

Laure Coutin

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 479-526
  • ISSN: 1292-8100


We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.

How to cite


Coutin, Laure. "Rough paths via sewing Lemma." ESAIM: Probability and Statistics 16 (2012): 479-526. <>.

abstract = {We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.},
author = {Coutin, Laure},
journal = {ESAIM: Probability and Statistics},
keywords = {rough paths; differential equations; rough path theory; -variation; stochastic differential equations; -Hölder continuity},
language = {eng},
pages = {479-526},
publisher = {EDP-Sciences},
title = {Rough paths via sewing Lemma},
url = {},
volume = {16},
year = {2012},

AU - Coutin, Laure
TI - Rough paths via sewing Lemma
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 479
EP - 526
AB - We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.
LA - eng
KW - rough paths; differential equations; rough path theory; -variation; stochastic differential equations; -Hölder continuity
UR -
ER -


  1. [1] F. Baudoin, An introduction to the geometry of stochastic lows. Imperial Press College, London (2004). Zbl1085.60002MR2154760
  2. [2] J. Bertoin, Sur une intégrale pour les processus à α-variation bornée. Ann. Probab.17 (1999) 1521–1535. Zbl0687.60054MR1048943
  3. [3] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math.65 (1957) 163–178. Zbl0077.25301MR85251
  4. [4] K.-T. Chen, Integration of paths; a faithful representation of paths by non-commutative formal power series. Trans. Amer. Math Soc.89 (1958) 395-407. Zbl0097.25803MR106258
  5. [5] K.-T. Chen, Integration of paths, Bull. Amer. Math. Soc.83 (1977) 831–879. Zbl0389.58001MR454968
  6. [6] Z. Ciesielski, G. Kerkyacharian and B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens. Studia Math.107 (1993) 171–204. Zbl0809.60004MR1244574
  7. [7] L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields122 (2002) 108–140. Zbl1047.60029MR1883719
  8. [8] L. Coutin and N. Victoir, Enhanced Gaussian processes and applications. ESAIM Probab. Stat.13 (2009) 247–260. Zbl1181.60057MR2528082
  9. [9] A.M. Davie, Differential equations driven by rough paths : an approach via discrete approximation. Appl. Math. Res. Express. AMRX 2 (2007) abm009, 40. Zbl1163.34005MR2387018
  10. [10] A.M. Davie, Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN 24 (2007) rnm124, 26. Zbl1139.60028MR2377011
  11. [11] H. Doss, Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincaré Sect. B (N.S.) 13 (1977) 99–125. Zbl0359.60087MR451404
  12. [12] D. Feyel and A. de La Pradelle, Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006) 860–892 (electronic). Zbl1110.60031MR2261056
  13. [13] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge University Press (2008). Zbl1193.60053MR2604669
  14. [14] P. Friz and N. Victoir, Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 369–413. Zbl1202.60058MR2667703
  15. [15] M. Gubinelli, Controlling rough paths. J. Funct. Anal.216 (2004) 86–140. Zbl1058.60037MR2091358
  16. [16] Y. Hu and D. Nualart, Rough path analysis via fractional calculus. Trans. Amer. Math. Soc.361 (2009) 2689–2718. Zbl1175.60061MR2471936
  17. [17] Y. Inahama and H. Kawabi, Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths. J. Funct. Anal.243 (2007) 270–322. Zbl1114.60062MR2291439
  18. [18] A. Lejay, An introduction to rough paths. Séminaire de probabilités, XXXVII 1832 (2003) 1–59. Zbl1041.60051MR2053040
  19. [19] A. Lejay, Yet another introduction to rough paths. Séminaire de Probabilités, Lect. Notes in Maths XLII (2009) 1–101. Zbl1198.60002MR2599204
  20. [20] A. Lejay, On rough differential equations. Electron. J. Probab.14 (2009) 341–364. Zbl1190.60044MR2480544
  21. [21] T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L.C. Young. Math. Res. Lett.1 (1994) 451–464. Zbl0835.34004MR1302388
  22. [22] T.J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana14 (1998) 215–310. Zbl0923.34056MR1654527
  23. [23] T. Lyons and Zhongmin Qian, System control and rough paths. Oxford Mathematical Monographs. Oxford University Press, Oxford, Oxford Science Publications (2002). Zbl1029.93001MR2036784
  24. [24] T. Lyons, M. Caruana and T. Lévy, Differential equations driven by rough paths Ecole d’été de probabilités de Saint-Flour XXXIV (2004), Lectures Notes in Math 1908. J. Picard Ed., Springer, Berlin (2007). Zbl1176.60002MR2314753
  25. [25] I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, in Séminaire de probabilités XLI, Lecture Notes in Math. 1934. Springer, Berlin (2008) 181–197. Zbl1148.60034MR2483731
  26. [26] D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion. Collect. Math.53 (2002) 55–81. Zbl1018.60057
  27. [27] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon (1993). Theory and applications, Edited and with a foreword by S.M. Nikolski Ed., Translated from the 1987 Russian original, Revised by the authors. Zbl0818.26003MR1347689
  28. [28] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30. Princeton University Press, Princeton, N.J. (1970). Zbl0207.13501MR290095
  29. [29] H. Sussmann, On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab.6 (1978) 19–41. Zbl0391.60056MR461664
  30. [30] A. Tychonoff, Ein Fixpunktsatz. Math. Ann.111 (1935) 767–776. Zbl0012.30803MR1513031
  31. [31] L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration. Acta Math.67 (1936) 251–282. Zbl0016.10404MR1555421
  32. [32] M. Zähle, On the link between fractional and stochastic calculus, in Stochastic dynamics, Bremen (1997), Springer, New York (1999) 305–325. Zbl0947.60060MR1678495

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.