L -Convergence of Finite Element Approximation

J. A. Nitsche

Publications mathématiques et informatique de Rennes (1975)

  • Issue: S3, page 1-17

How to cite


Nitsche, J. A.. "$L_\infty $-Convergence of Finite Element Approximation." Publications mathématiques et informatique de Rennes (1975): 1-17. <http://eudml.org/doc/273745>.

author = {Nitsche, J. A.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S3},
pages = {1-17},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {$L_\infty $-Convergence of Finite Element Approximation},
url = {http://eudml.org/doc/273745},
year = {1975},

AU - Nitsche, J. A.
TI - $L_\infty $-Convergence of Finite Element Approximation
JO - Publications mathématiques et informatique de Rennes
PY - 1975
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S3
SP - 1
EP - 17
LA - eng
UR - http://eudml.org/doc/273745
ER -


  1. Alexitis, G. 1 Einige Beiträge zur ApproximationstheorieActa Scientiarum Mathematicarum, XXVI (1965), 212-224 Zbl0141.31002
  2. Bramble, J.H., J. Nitsche, and A. Schatz 1 Maximum norm interior estimates for Ritz-Galerkin methods (to appear) Zbl0316.65023MR398120
  3. Bramble, J.H. and A.H. Schatz 1 Interior maximum-normand superconvergence estimates for spline projections (to appear) MR436620
  4. 2 Higher order local accuracy by averaging in the finite element method (to appear) Zbl0353.65064
  5. Ciarlet, P.G. and P.A. Raviart 1 The combined effect of curved boundaries and numericalintegration in isoparametric finite element methodsProc. of Conf. "The mathematical foundations of the finite element method with applications to partial differential equations" Acad. Press (1972), 409- 474 Zbl0262.65070
  6. 2 Maximum principle and uniform convergence for the finite element methodComp. Meth. in Appl. Mech. a. Eng.2 (1973). 17- 31 Zbl0251.65069MR375802
  7. Douglas, J., T. Dupont, and M.P. Wheeler 1 An L ç estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials (to appear) Zbl0315.65062
  8. Lorentz, G.G. 1 Approximation of functionsHolt, Rinehart and Winston, New York1966 Zbl0153.38901MR213785
  9. Natterer, F. 1 Über die punktweise Konvergenz finiter Elemente (to appear) Zbl0331.65073MR474884
  10. Nitsche, J. 1 Orthogonalreihenentwicklung nach linearen Spline-FunktionenJ.Appr. Th.2 (1969), 66-78 Zbl0174.36003MR251424
  11. 2 Lineare Spline-Funktionen und die Methoden von Ritz für elliptische RandwertproblemeArch. rat. Mech. Anal.36 (1970), 348-355 Zbl0192.44503MR255043
  12. Scott, R. 1 Optimal L estimates for the finite element method on irregular meshes (to appear) Zbl0349.65060MR436617
  13. Wahlbin, L. 1 On maximum norm error estimates for Galerkin approximations to one dimensional second order parabolic boundary value problems (to appear) Zbl0272.65091MR383785
  14. Wheeler, M.F. 1 L estimates of optimal order for Galerkin methods for one-dimensional second order parabolic and hyperbolic equationsSIAM J. Numer. Anal.10 (1973), 908-913 Zbl0266.65074MR343658
  15. Zlamal, M. 1 Curved elements in the finite element method, part I : SIAM J. Numer. Anal.10 (1973), 229-240part II: SIAM J. Numer. Anal.11 (1974), 347-362 Zbl0277.65064MR395263

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.