Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods

B. Mercier; J. Rappaz

Publications mathématiques et informatique de Rennes (1978)

  • Issue: S4, page 1-16

How to cite

top

Mercier, B., and Rappaz, J.. "Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods." Publications mathématiques et informatique de Rennes (1978): 1-16. <http://eudml.org/doc/273821>.

@article{Mercier1978,
author = {Mercier, B., Rappaz, J.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-16},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods},
url = {http://eudml.org/doc/273821},
year = {1978},
}

TY - JOUR
AU - Mercier, B.
AU - Rappaz, J.
TI - Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods
JO - Publications mathématiques et informatique de Rennes
PY - 1978
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 16
LA - eng
UR - http://eudml.org/doc/273821
ER -

References

top
  1. [1] Babuska, I., Aziz, A.K., Survey lectures the mathematical foundations of the finite element method, Academic Press, New York and London,1972. Zbl0268.65052MR421106
  2. [2] Babuska, I., The finite element method with lagrangian multipliers, Numer. Math., 20 (1973), 179-192. Zbl0258.65108MR359352
  3. [3] Bramble, J.H., Osborn, J.E. , Rate of convergence estimates for non-self-adjoint eigenvalue approximations, Math. Comp., 20., (1973), 527-549. Zbl0305.65064MR366029
  4. [4] Brezzi, F.On the existence, uniqueness and approximation of saddlepoint problems arising from the lagranglan multipliers, RAIRO R2, (1974), 129-151. Zbl0338.90047MR365287
  5. [5] Brezzi, F., Raviart, P.A. . Mixed finite element methods for 4th order elliptic equations, Rapport Interne n°9, Centre de Mathématiques Appliquées de l'Ecole Polytechnique, 91128 PALAISEAU CX, FRANCE. Zbl0434.65085
  6. [6] Canuto, C.Eigenvalue approximations by mixed methos, RAIRO, Analyse Numérique, 12 ( 1978 ), 27-50. Zbl0434.65032MR488712
  7. [7] Crouzeix, M. Raviart , P.A., Conforming and non conforming finite element methods for solving the stationary Stokes equations I, RAIRO,Analyse Numérique, R3 (1973), 33-76. Zbl0302.65087MR343661
  8. [8] Descloux, J., Nassif, N., Rappaz, J., On spectral approximation, Part 1 : the problem of convergence; Part 2 : Error estimates for the Galerkin method, RAIRO, 12, 2 (1978). Zbl0393.65025
  9. [9] Fix, G.. Eigenvalue approximation by the finite element method, Adv. in Math., 10 (1973) ,300-316. Zbl0257.65086MR341900
  10. [10] Kato, T., Perturbation theory for linear operators, springer verlag. New York INC., 1966. Zbl0435.47001MR203473
  11. [11] Kikuchi, F.. Convergence of the ACM finite element scheme for plate bending problems, Publ. R.I.M.S., Kyoto Univ., 11 (1975), 247-265. Zbl0326.73065MR391540
  12. [12] Kolata, Communication at the finite element circus, univ. of Maryland, Nov. 12 , 1977 . 
  13. [13] Osborn, J.E., Spectral approximation for compact operators, Math. comp.29 (1975), 712-725. Zbl0315.35068MR383117
  14. [14] Rappaz, J.. Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma, Numer. Math., 28 (1977), 15-24. Zbl0341.65044MR474800
  15. [15] Raviart, P.A., Thomas, J.M., A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, n° 606 , Springer Verlag, 1977 , 292-315 . Zbl0362.65089MR483555
  16. [16] Strang, G., Fix , G.J., An analysis of the finite element method, Prentice Hall, New York, 1973. Zbl0356.65096MR443377
  17. [17] Thomas, J.M., Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse de l'Université Pierre et Marie Curie, Paris, 1977 . 
  18. [18 ] Wilkinson, J.H., The algebraic eigenvalue problem, oxford university Press, 1965. Zbl0626.65029MR184422

NotesEmbed ?

top

You must be logged in to post comments.