Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods

B. Mercier; J. Rappaz

Publications mathématiques et informatique de Rennes (1978)

  • Issue: S4, page 1-16

How to cite


Mercier, B., and Rappaz, J.. "Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods." Publications mathématiques et informatique de Rennes (1978): 1-16. <http://eudml.org/doc/273821>.

author = {Mercier, B., Rappaz, J.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-16},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods},
url = {http://eudml.org/doc/273821},
year = {1978},

AU - Mercier, B.
AU - Rappaz, J.
TI - Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods
JO - Publications mathématiques et informatique de Rennes
PY - 1978
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 16
LA - eng
UR - http://eudml.org/doc/273821
ER -


  1. [1] Babuska, I., Aziz, A.K., Survey lectures the mathematical foundations of the finite element method, Academic Press, New York and London,1972. Zbl0268.65052MR421106
  2. [2] Babuska, I., The finite element method with lagrangian multipliers, Numer. Math., 20 (1973), 179-192. Zbl0258.65108MR359352
  3. [3] Bramble, J.H., Osborn, J.E. , Rate of convergence estimates for non-self-adjoint eigenvalue approximations, Math. Comp., 20., (1973), 527-549. Zbl0305.65064MR366029
  4. [4] Brezzi, F.On the existence, uniqueness and approximation of saddlepoint problems arising from the lagranglan multipliers, RAIRO R2, (1974), 129-151. Zbl0338.90047MR365287
  5. [5] Brezzi, F., Raviart, P.A. . Mixed finite element methods for 4th order elliptic equations, Rapport Interne n°9, Centre de Mathématiques Appliquées de l'Ecole Polytechnique, 91128 PALAISEAU CX, FRANCE. Zbl0434.65085
  6. [6] Canuto, C.Eigenvalue approximations by mixed methos, RAIRO, Analyse Numérique, 12 ( 1978 ), 27-50. Zbl0434.65032MR488712
  7. [7] Crouzeix, M. Raviart , P.A., Conforming and non conforming finite element methods for solving the stationary Stokes equations I, RAIRO,Analyse Numérique, R3 (1973), 33-76. Zbl0302.65087MR343661
  8. [8] Descloux, J., Nassif, N., Rappaz, J., On spectral approximation, Part 1 : the problem of convergence; Part 2 : Error estimates for the Galerkin method, RAIRO, 12, 2 (1978). Zbl0393.65025
  9. [9] Fix, G.. Eigenvalue approximation by the finite element method, Adv. in Math., 10 (1973) ,300-316. Zbl0257.65086MR341900
  10. [10] Kato, T., Perturbation theory for linear operators, springer verlag. New York INC., 1966. Zbl0435.47001MR203473
  11. [11] Kikuchi, F.. Convergence of the ACM finite element scheme for plate bending problems, Publ. R.I.M.S., Kyoto Univ., 11 (1975), 247-265. Zbl0326.73065MR391540
  12. [12] Kolata, Communication at the finite element circus, univ. of Maryland, Nov. 12 , 1977 . 
  13. [13] Osborn, J.E., Spectral approximation for compact operators, Math. comp.29 (1975), 712-725. Zbl0315.35068MR383117
  14. [14] Rappaz, J.. Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma, Numer. Math., 28 (1977), 15-24. Zbl0341.65044MR474800
  15. [15] Raviart, P.A., Thomas, J.M., A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, n° 606 , Springer Verlag, 1977 , 292-315 . Zbl0362.65089MR483555
  16. [16] Strang, G., Fix , G.J., An analysis of the finite element method, Prentice Hall, New York, 1973. Zbl0356.65096MR443377
  17. [17] Thomas, J.M., Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse de l'Université Pierre et Marie Curie, Paris, 1977 . 
  18. [18 ] Wilkinson, J.H., The algebraic eigenvalue problem, oxford university Press, 1965. Zbl0626.65029MR184422

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.