Associated Graded Rings Derived from Integrally Closed Ideals and the Local Homological Conjectures

Melvin Hochster

Publications mathématiques et informatique de Rennes (1980)

  • Issue: S3, page 1-27

How to cite

top

Hochster, Melvin. "Associated Graded Rings Derived from Integrally Closed Ideals and the Local Homological Conjectures." Publications mathématiques et informatique de Rennes (1980): 1-27. <http://eudml.org/doc/273842>.

@article{Hochster1980,
author = {Hochster, Melvin},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {integrally closed ideals; system of parameters; local ring; direct summand conjecture; big Cohen-Macaulay modules; Frobenius},
language = {eng},
number = {S3},
pages = {1-27},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Associated Graded Rings Derived from Integrally Closed Ideals and the Local Homological Conjectures},
url = {http://eudml.org/doc/273842},
year = {1980},
}

TY - JOUR
AU - Hochster, Melvin
TI - Associated Graded Rings Derived from Integrally Closed Ideals and the Local Homological Conjectures
JO - Publications mathématiques et informatique de Rennes
PY - 1980
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S3
SP - 1
EP - 27
LA - eng
KW - integrally closed ideals; system of parameters; local ring; direct summand conjecture; big Cohen-Macaulay modules; Frobenius
UR - http://eudml.org/doc/273842
ER -

References

top
  1. [A1] M. Auslander, Modules over unramified regular local rings, Illinois J. of Math.5 (1961), 631-645. Zbl0104.26202MR179211
  2. [A2] M. Auslander, Modules over unramified regular local rings, Proc. Intern. Congress of Math., 1962, 230-233. Zbl0123.03702MR175930
  3. [B] H. Bass, On the ubiquity of Gorenstein rings. Math. Z.82 (1963), 8-28. Zbl0112.26604MR153708
  4. [EH] J.A. Eagon and M. Hochster, R-sequences and indeterminates, Quart. J. Math.Oxford. Ser. (2) 25 (1974) , 61-71. Zbl0278.13008MR337934
  5. [H1] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J.51 (1973) , 25-43. Zbl0245.13012MR349656
  6. [H2] M. Hochster, "Topics in the homological theory of modules over commutative rings", C.B.M.S. Regional Conference Series in Math. No. 24, Amer. Math. Soc., Providence,1975. Zbl0302.13003MR371879
  7. [H3]] M. Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, "Proc. of the Queen's University Commutative Algebra Conference" (Kingston, Ontario, Canada, 1975) Queen's Papers in Pure and Applied Math. No. 42, 106-195. Zbl0342.13009MR396544
  8. [H4] M. Hochster, The dimension of an intersection in an ambient hypersurface, Proceedings of the First Midwest Algebraic Geometry Seminar, Springer-VerlagLecture Notes in Math., to appear. Zbl0472.13005MR644818
  9. [H5] M. Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, in preparation. Zbl0562.13012
  10. [PS1] C. Peskine and L. Szpiro, Notes sur un air de H. Bass, unpublished preprint (Brandeis University, Waltham, Massachusetts). 
  11. [PS2] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math.- I.H.E.S., Paris, No. 42, 1973, 323-395. Zbl0268.13008
  12. [R] P. Roberts, Two applications of dualizing complexes over local rings, Ann. Scient. Ec. Norm. Sup. (4) 9 (1976), 103-106. Zbl0326.13004MR399075
  13. [ZS] O. Zariski and P. Samuel, "Commutative algebra", Vol. II, Princeton, Van Nostrand, 1960. Zbl0081.26501MR120249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.