L'œuvre de Louis Antoine et son influence

Horst Ibisch

Publications mathématiques et informatique de Rennes (1988)

  • Volume: 9, Issue: S6, page 1-35

How to cite

top

Ibisch, Horst. "L'œuvre de Louis Antoine et son influence." Publications mathématiques et informatique de Rennes 9.S6 (1988): 1-35. <http://eudml.org/doc/273929>.

@article{Ibisch1988,
author = {Ibisch, Horst},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {Antoine's necklace; Schoenflies problem; Bing shrinking criterion; Henri Lebesgue; J. W. Alexander; Morton Brown},
language = {fre},
number = {S6},
pages = {1-35},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {L'œuvre de Louis Antoine et son influence},
url = {http://eudml.org/doc/273929},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Ibisch, Horst
TI - L'œuvre de Louis Antoine et son influence
JO - Publications mathématiques et informatique de Rennes
PY - 1988
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 9
IS - S6
SP - 1
EP - 35
LA - fre
KW - Antoine's necklace; Schoenflies problem; Bing shrinking criterion; Henri Lebesgue; J. W. Alexander; Morton Brown
UR - http://eudml.org/doc/273929
ER -

References

top
  1. [1] J.W. Alexander, Remarks on a Point set constructed by ANTOINE, Proc. Nat. Acad. Sci., U.S.A., vol. 10 (1924), 10-12. JFM50.0661.03
  2. [2] J.W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci., U.S.A., vol. 10 (1924) 8-10. JFM50.0661.02
  3. [3] P. Alexandroff und H. Hopf, TOPOLOGIE, Springer-VerlagBerlin1935. Zbl0013.07904
  4. [4] L. Antoine, Sur la possibilité d'étendre l'homéomorphie de deux figures à leurs voisinages, C.R. Acad. Sci. Paris t. 171 (1920), 661-633. Zbl47.0524.01JFM47.0524.01
  5. [5] L. Antoine, Sur l'homéomorphie de deux figures et de leurs voisinages. J. Math. Pures Appl., vol. 86 (1921), 221-325. Zbl48.0650.01JFM48.0650.01
  6. [6] R.H. Bing, A homéomorphism between the 3-sphere and the Sum of two solid horned spheres. Ann. of Math. vol. 56 (1952), 354-362. Zbl0049.40401MR49549
  7. [7] L.E.J. Brouwer, Beweis des JORDANSCHEN Satzes für den n-dimensionalen Raum, Math. Ann. Bd.71 (1912), 314. Zbl42.0418.02JFM42.0418.02
  8. [8] L.E.J. Brouwer, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann., vol. 80 (1919) 39-41. MR1511946JFM47.0527.01
  9. [9] M. Brown, A proof of the generalized SCHOENFLIES theorem. Bull. Amer. Math. Soc.66 (1960), 74-76. Zbl0132.20002MR117695
  10. [10] A. Denjoy, C.R. Acad. Sci.Paris, t. 149 (1909), 1048. 
  11. A. Denjoy, C.R. Acad. Sci.Paris, t. 151 (1910), 138. 
  12. [11] R.D. Edwards, The topology of manifolds and cell-like maps. Proceed. ICM, Helsinki (1978) vol. 1, 111-127. Zbl0428.57004MR562601
  13. [12] R.D. Edwards, Approximating certain cell-like maps by homeomorphisms. Voir F. LATOURSem. Bourbaki 30è année 1977/78 n° 515. Zbl0479.57008
  14. [13] R.H. Fox and E. Artin, Some wild cells and spheres in three dimensional space. Ann. of Math. vol. 42 (1948), 979-990. Zbl0033.13602MR27512
  15. [14] M.H. Freedman, The topology of Four-dimensional Manifolds. J. Differential Geom.17 (1982), 357-453. Zbl0528.57011MR679066
  16. [15] G. Julia, Notice nécrologique sur L. Antoine, C.R. Acad. Sci.Paris, t. 272 (8 mars 1971), Vie Académique71-74. 
  17. [16] B. de Kerekjarto, Sur la structure des transformations topologiques des surfaces en elles-même. L'Ens. Math.35 (1952), 297-316. Zbl0016.04403
  18. [17] R.C. Kirby, Stable homéomorphismes and the annulus conjecture. Ann. of Math.89 (1969), 575-582. Zbl0176.22004MR242165
  19. [18] R.C. Kirby and L.C. Siebenmann, On the triangulation of manifolds and the HAUPTVERMUTUNG, Bull. Amer. Math. Soc.75 (1969), 742-749. Zbl0189.54701MR242166
  20. [19] R.C. Kirby and L.C. Siebenmann : Foundational Essays on topological manifolds, smoothings and triangulations. Ann. of. Math. Studies, Princeton U. Press n)88 (1977). Zbl0361.57004MR645390
  21. [20] E.E. Moise, Geometric Topology in dimensions 2 and 3, Graduate texts in Mathematics. Springer VerlagN.Y.1977. Zbl0349.57001MR488059
  22. [21] F. Quinn, Ends of maps. III : Dimension 4 and 5. J. Differential Geom.17 (1982), 503-521. Zbl0533.57009MR679069
  23. [22] A. Schoenflies, Die Entwickelung der Lehre von den Punktmannigfaltigkeiten. Jber. Dtsch. Math. Ver.Leipzig1908. JFM31.0070.08
  24. [23] J.H.C. Whitehead, A certain open manifold whose group is unity. Quart. Jour. Math.2 (6) (1935), 268-279. Zbl0013.08103JFM61.0607.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.