L'œuvre de Louis Antoine et son influence

Horst Ibisch

Publications mathématiques et informatique de Rennes (1988)

  • Volume: 9, Issue: S6, page 1-35

How to cite

top

Ibisch, Horst. "L'œuvre de Louis Antoine et son influence." Publications mathématiques et informatique de Rennes 9.S6 (1988): 1-35. <http://eudml.org/doc/273929>.

@article{Ibisch1988,
author = {Ibisch, Horst},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {Antoine's necklace; Schoenflies problem; Bing shrinking criterion; Henri Lebesgue; J. W. Alexander; Morton Brown},
language = {fre},
number = {S6},
pages = {1-35},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {L'œuvre de Louis Antoine et son influence},
url = {http://eudml.org/doc/273929},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Ibisch, Horst
TI - L'œuvre de Louis Antoine et son influence
JO - Publications mathématiques et informatique de Rennes
PY - 1988
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 9
IS - S6
SP - 1
EP - 35
LA - fre
KW - Antoine's necklace; Schoenflies problem; Bing shrinking criterion; Henri Lebesgue; J. W. Alexander; Morton Brown
UR - http://eudml.org/doc/273929
ER -

References

top
  1. [1] J.W. Alexander, Remarks on a Point set constructed by ANTOINE, Proc. Nat. Acad. Sci., U.S.A., vol. 10 (1924), 10-12. JFM50.0661.03
  2. [2] J.W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci., U.S.A., vol. 10 (1924) 8-10. JFM50.0661.02
  3. [3] P. Alexandroff und H. Hopf, TOPOLOGIE, Springer-VerlagBerlin1935. Zbl0013.07904
  4. [4] L. Antoine, Sur la possibilité d'étendre l'homéomorphie de deux figures à leurs voisinages, C.R. Acad. Sci. Paris t. 171 (1920), 661-633. Zbl47.0524.01JFM47.0524.01
  5. [5] L. Antoine, Sur l'homéomorphie de deux figures et de leurs voisinages. J. Math. Pures Appl., vol. 86 (1921), 221-325. Zbl48.0650.01JFM48.0650.01
  6. [6] R.H. Bing, A homéomorphism between the 3-sphere and the Sum of two solid horned spheres. Ann. of Math. vol. 56 (1952), 354-362. Zbl0049.40401MR49549
  7. [7] L.E.J. Brouwer, Beweis des JORDANSCHEN Satzes für den n-dimensionalen Raum, Math. Ann. Bd.71 (1912), 314. Zbl42.0418.02JFM42.0418.02
  8. [8] L.E.J. Brouwer, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann., vol. 80 (1919) 39-41. MR1511946JFM47.0527.01
  9. [9] M. Brown, A proof of the generalized SCHOENFLIES theorem. Bull. Amer. Math. Soc.66 (1960), 74-76. Zbl0132.20002MR117695
  10. [10] A. Denjoy, C.R. Acad. Sci.Paris, t. 149 (1909), 1048. 
  11. A. Denjoy, C.R. Acad. Sci.Paris, t. 151 (1910), 138. 
  12. [11] R.D. Edwards, The topology of manifolds and cell-like maps. Proceed. ICM, Helsinki (1978) vol. 1, 111-127. Zbl0428.57004MR562601
  13. [12] R.D. Edwards, Approximating certain cell-like maps by homeomorphisms. Voir F. LATOURSem. Bourbaki 30è année 1977/78 n° 515. Zbl0479.57008
  14. [13] R.H. Fox and E. Artin, Some wild cells and spheres in three dimensional space. Ann. of Math. vol. 42 (1948), 979-990. Zbl0033.13602MR27512
  15. [14] M.H. Freedman, The topology of Four-dimensional Manifolds. J. Differential Geom.17 (1982), 357-453. Zbl0528.57011MR679066
  16. [15] G. Julia, Notice nécrologique sur L. Antoine, C.R. Acad. Sci.Paris, t. 272 (8 mars 1971), Vie Académique71-74. 
  17. [16] B. de Kerekjarto, Sur la structure des transformations topologiques des surfaces en elles-même. L'Ens. Math.35 (1952), 297-316. Zbl0016.04403
  18. [17] R.C. Kirby, Stable homéomorphismes and the annulus conjecture. Ann. of Math.89 (1969), 575-582. Zbl0176.22004MR242165
  19. [18] R.C. Kirby and L.C. Siebenmann, On the triangulation of manifolds and the HAUPTVERMUTUNG, Bull. Amer. Math. Soc.75 (1969), 742-749. Zbl0189.54701MR242166
  20. [19] R.C. Kirby and L.C. Siebenmann : Foundational Essays on topological manifolds, smoothings and triangulations. Ann. of. Math. Studies, Princeton U. Press n)88 (1977). Zbl0361.57004MR645390
  21. [20] E.E. Moise, Geometric Topology in dimensions 2 and 3, Graduate texts in Mathematics. Springer VerlagN.Y.1977. Zbl0349.57001MR488059
  22. [21] F. Quinn, Ends of maps. III : Dimension 4 and 5. J. Differential Geom.17 (1982), 503-521. Zbl0533.57009MR679069
  23. [22] A. Schoenflies, Die Entwickelung der Lehre von den Punktmannigfaltigkeiten. Jber. Dtsch. Math. Ver.Leipzig1908. JFM31.0070.08
  24. [23] J.H.C. Whitehead, A certain open manifold whose group is unity. Quart. Jour. Math.2 (6) (1935), 268-279. Zbl0013.08103JFM61.0607.01

NotesEmbed ?

top

You must be logged in to post comments.