Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation

C. Cheverry

Publications mathématiques et informatique de Rennes (1992-1993)

  • Issue: 1, page 1-29

How to cite

top

Cheverry, C.. "Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation." Publications mathématiques et informatique de Rennes (1992-1993): 1-29. <http://eudml.org/doc/273992>.

@article{Cheverry1992-1993,
author = {Cheverry, C.},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {1},
pages = {1-29},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation},
url = {http://eudml.org/doc/273992},
year = {1992-1993},
}

TY - JOUR
AU - Cheverry, C.
TI - Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation
JO - Publications mathématiques et informatique de Rennes
PY - 1992-1993
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 1
EP - 29
LA - fre
UR - http://eudml.org/doc/273992
ER -

References

top
  1. [1] S. Alinhac. Le probleme de Goursat hyperbolique en dimension deux, Comm. In Partial Differential Equations. 3 (1976), 231-282. Zbl0348.35066MR415082
  2. [2] Chazarain & Piriou. Introduction to the theory of linear partial differential equations, Studies in Mathematics and its applications. Zbl0487.35002
  3. [3] C. Cheverry. Justification de l'optique geometrique pour une loi de conservation scalaire, fascicule d'équations aux dérivées partielles. Institut de Recherche Mathématique de Rennes. (1992), 55-84. 
  4. [4] R. J. DiPerna & A, Majda. The validity of nonlinear geometric optics for weak solutions of conservation laws, Comm. Math. Physics. (1985), 1-80. Zbl0582.35081MR788777
  5. [5] R. J. DiPerna. Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal. (1985), 223-270. Zbl0616.35055MR775191
  6. [6] J. Glimm. Solutions in the large for Nonlinear Hyperbolic Systems of Equations, Comm. On Pure And Applied Mathematics18 (1965), 697-715. Zbl0141.28902MR194770
  7. [7] J. Hunter, J. Keller. weakly non linear high frequency waves, Comm. On Pure And Applied Mathematics36 (1983), 547-645. Zbl0547.35070MR716196
  8. [8] J. Hunter, A. Majda, R. Rosalès. Resonantly interacting weakly non linear hyperbolic waves, Stud. Appl. Math71 (1984), 149-179. Zbl0572.76066MR760229
  9. [9] J-L. Joly, G. Metivier, J. Rauch. Resonant one dimensional non linear geometric optics, J. of. Functional. Analysis (1993 à paraître). Zbl0851.35023
  10. [10] J-L. Joly, G. Metivier, J. Rauch. Focusing and absorbtion of nonlinear oscillations, preprint Rennes1993. Zbl0815.35071MR1240527
  11. [11] S. SchochetResonant Nonlinear geometric optics for weak solutions of conservation laws, preprintTel Aviv University1992. Zbl0856.35080MR1297667
  12. [12] L. TartarCompensated Compactness and Applications to PDEs, Nonlinear Analysis and Mechanics, Herriot Watt Symposium (1979). Zbl0437.35004
  13. [13] A. I. Volpert. The spaces BV and quasilinear equations, Math. USSR. Sbornik2 (1967), 225-267. Zbl0168.07402MR216338
  14. [14] E. Weinan. Homogenization of Linear and Nonlinear Transport Equations, Comm. On Pure And Applied MathematicsXLV (1992), 301-326. Zbl0794.35014MR1151269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.