Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation
Publications mathématiques et informatique de Rennes (1992-1993)
- Issue: 1, page 1-29
Access Full Article
topHow to cite
topCheverry, C.. "Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation." Publications mathématiques et informatique de Rennes (1992-1993): 1-29. <http://eudml.org/doc/273992>.
@article{Cheverry1992-1993,
author = {Cheverry, C.},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {1},
pages = {1-29},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation},
url = {http://eudml.org/doc/273992},
year = {1992-1993},
}
TY - JOUR
AU - Cheverry, C.
TI - Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation
JO - Publications mathématiques et informatique de Rennes
PY - 1992-1993
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 1
EP - 29
LA - fre
UR - http://eudml.org/doc/273992
ER -
References
top- [1] S. Alinhac. Le probleme de Goursat hyperbolique en dimension deux, Comm. In Partial Differential Equations. 3 (1976), 231-282. Zbl0348.35066MR415082
- [2] Chazarain & Piriou. Introduction to the theory of linear partial differential equations, Studies in Mathematics and its applications. Zbl0487.35002
- [3] C. Cheverry. Justification de l'optique geometrique pour une loi de conservation scalaire, fascicule d'équations aux dérivées partielles. Institut de Recherche Mathématique de Rennes. (1992), 55-84.
- [4] R. J. DiPerna & A, Majda. The validity of nonlinear geometric optics for weak solutions of conservation laws, Comm. Math. Physics. (1985), 1-80. Zbl0582.35081MR788777
- [5] R. J. DiPerna. Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal. (1985), 223-270. Zbl0616.35055MR775191
- [6] J. Glimm. Solutions in the large for Nonlinear Hyperbolic Systems of Equations, Comm. On Pure And Applied Mathematics18 (1965), 697-715. Zbl0141.28902MR194770
- [7] J. Hunter, J. Keller. weakly non linear high frequency waves, Comm. On Pure And Applied Mathematics36 (1983), 547-645. Zbl0547.35070MR716196
- [8] J. Hunter, A. Majda, R. Rosalès. Resonantly interacting weakly non linear hyperbolic waves, Stud. Appl. Math71 (1984), 149-179. Zbl0572.76066MR760229
- [9] J-L. Joly, G. Metivier, J. Rauch. Resonant one dimensional non linear geometric optics, J. of. Functional. Analysis (1993 à paraître). Zbl0851.35023
- [10] J-L. Joly, G. Metivier, J. Rauch. Focusing and absorbtion of nonlinear oscillations, preprint Rennes1993. Zbl0815.35071MR1240527
- [11] S. SchochetResonant Nonlinear geometric optics for weak solutions of conservation laws, preprintTel Aviv University1992. Zbl0856.35080MR1297667
- [12] L. TartarCompensated Compactness and Applications to PDEs, Nonlinear Analysis and Mechanics, Herriot Watt Symposium (1979). Zbl0437.35004
- [13] A. I. Volpert. The spaces BV and quasilinear equations, Math. USSR. Sbornik2 (1967), 225-267. Zbl0168.07402MR216338
- [14] E. Weinan. Homogenization of Linear and Nonlinear Transport Equations, Comm. On Pure And Applied MathematicsXLV (1992), 301-326. Zbl0794.35014MR1151269
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.