Justification de l'optique géométrique non linéaire pour une loi de conservation scalaire
Publications mathématiques et informatique de Rennes (1992)
- Issue: 1, page 55-84
Access Full Article
topHow to cite
topReferences
top- 1. R. J. DiPerna, A. Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Comm. Math. Physics (1985). Zbl0582.35081MR788777
- 2. J. Hunter, J. Keller, Weakly Nonlinear High Frequency Waves, Comm. Pure. App. Math.36 (1983), 547-569. Zbl0547.35070MR716196
- 3. J. L. Joly, G. Metivier, J. Rauch, Resonant One Dimensional Nonlinear Geometric Optics, Preprint (1985). Zbl0851.35023MR1220985
- 4. L. A. Kalyakin, Long Waves Asymptotics of Solutions of Nonlinear Systems of equations with dispersion, Dokl. An. SSSR288 (1986). Zbl0629.35015MR852272
- 5. S. N. Kruzkov, First order quasilinear equations in several independant variables, Math. USSR. Sbornik.10 (1970). Zbl0215.16203MR267257
- 6. Tai Ping Liu, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. Math. Physics. (1985). Zbl0357.35059
- 7. A. I. Volpert, The spaces BV and quasilinear equations, Math. USSR. Sbornik. 2 (1967). Zbl0168.07402MR216338