The Exact Hausdorff Dimension of a Branching Set

Quansheng Liu

Publications mathématiques et informatique de Rennes (1993)

  • Issue: 2, page 1-38

How to cite

top

Liu, Quansheng. "The Exact Hausdorff Dimension of a Branching Set." Publications mathématiques et informatique de Rennes (1993): 1-38. <http://eudml.org/doc/274010>.

@article{Liu1993,
author = {Liu, Quansheng},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {2},
pages = {1-38},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {The Exact Hausdorff Dimension of a Branching Set},
url = {http://eudml.org/doc/274010},
year = {1993},
}

TY - JOUR
AU - Liu, Quansheng
TI - The Exact Hausdorff Dimension of a Branching Set
JO - Publications mathématiques et informatique de Rennes
PY - 1993
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 2
SP - 1
EP - 38
LA - eng
UR - http://eudml.org/doc/274010
ER -

References

top
  1. [1] K.B. Athreya and P.E. Ney. Branching processes. Spring-Verlag, 1972. Zbl0259.60002MR373040
  2. [2] A.S. Besicovitch. On the fundamental geometrical properties of linearly measurable plan sets of points. Mathematische Annalen.98 (1928) 422-64. MR1512414JFM53.0175.04
  3. [3] K.J. Falconer. The Geometry of Fractal Sets. Cambridge Univ. Press, 1985 Zbl0587.28004MR867284
  4. [4] K.J. Falconer. Random fractals, Math. Proc. Camb. Phil. Soc.100 (1986) 559-582. Zbl0623.60020MR857731
  5. [5] K.J. Falconer. Cut set sums and tree processes. Proc. Amer. Math. Soc., (2) 101 (1987) 337-346. Zbl0636.90031MR902553
  6. [6] K.J. Falconer. Fractal Geometry. John Wiley & Sons Ltd, 1990. Zbl0689.28003MR3236784
  7. [7] S. Graf, R.D. Maudin and S.C. Williams. The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc., 71 (1988), No. 381. Zbl0641.60003MR920961
  8. [8] J. Hawkes. Trees generated by a simple branching process. J. London Math. Soc. (2) 24 (1981) 373-384. Zbl0468.60081MR631950
  9. [9] J.P. Kahane, J. Peyrière, Sur certaines martingales de B. Mandelbrot, Adv. Math.22 (1976) 131-145. Zbl0349.60051MR431355
  10. [10] Q. Liu. Sur quelques problèmes à propos des processus de branchement, des flots dans les réseaux et des mesures de Hausdorff associées. Thèse de doctorat de L'Université Paris 6, Laboratoire de Probabilités, Paris, 1993. 
  11. [11] R. Lyons. Random walks and percolation on trees. Ann. of Probab.18 (1990) 931-952 Zbl0714.60089MR1062053
  12. [12] R. Lyons and R. Pemantle. Random walk in a random environment and first passage percolation on trees. Ann. of probab.20, (1992) 125-135. Zbl0751.60066MR1143414
  13. [13] R. Lyons, R. Pemantle and Y. Peres. Ergodic theory on Galton-Watson trees, I: Speed of random walk and dimension of Harmonic measure. preprint, 1993. Zbl0819.60077MR1336708
  14. [14] R.D. Maudin and S.C. Williams. Random constructions, Asympototic geometric and topological properties. Trans. Amer. Math. Soc.295 (1986), 325-346. Zbl0625.54047MR831202
  15. [15] J. Neveu. Arbre et processus de Galton-Watson, Ann. Inst. Henri Poincaré, 22 (1986), 199-207. Zbl0601.60082MR850756
  16. [16] C.A. Rogers. Hausdorff Measures, Cambridge Univ. Press, 1970. Zbl0915.28002MR281862
  17. [17] S.J. Taylor. The measure theory of random fractals, Math. Proc. Cambridge Philos. Soc.100 (1986), 383-406. Zbl0622.60021MR857718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.