Sur les groupes 𝕂 T o p ( S n )

Raymond Heitz

Publications du Département de mathématiques (Lyon) (1976)

  • Volume: 13, Issue: 2, page 103-132
  • ISSN: 0076-1656

How to cite

top

Heitz, Raymond. "Sur les groupes $\mathbb {K}_{Top}(S_{n})$." Publications du Département de mathématiques (Lyon) 13.2 (1976): 103-132. <http://eudml.org/doc/274176>.

@article{Heitz1976,
author = {Heitz, Raymond},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {K-Top of spheres},
language = {fre},
number = {2},
pages = {103-132},
publisher = {Université Claude Bernard - Lyon 1},
title = {Sur les groupes $\mathbb \{K\}_\{Top\}(S_\{n\})$},
url = {http://eudml.org/doc/274176},
volume = {13},
year = {1976},
}

TY - JOUR
AU - Heitz, Raymond
TI - Sur les groupes $\mathbb {K}_{Top}(S_{n})$
JO - Publications du Département de mathématiques (Lyon)
PY - 1976
PB - Université Claude Bernard - Lyon 1
VL - 13
IS - 2
SP - 103
EP - 132
LA - fre
KW - K-Top of spheres
UR - http://eudml.org/doc/274176
ER -

References

top
  1. 1 J.F. Adams, Vector fields on spheres, Ann. of Math.75 (1962), p. 603-632. Zbl0112.38102MR139178
  2. 2 J.F. Adams, On the groups J(X), Part I, Topology 2 (1963), p. 181-196. Zbl0137.17001MR159336
  3. 3 J.F. Adams,On the groups J(X), Part IV, Topology 5 (1966), 21-71. Zbl0145.19902MR198470
  4. 4 J.M. Boardman AND R./. Vogt, Homotopy invariant Algebraic, Structures on topological spaces, Lectures Notes347, (1973). Zbl0285.55012MR420609
  5. 5 W. BrowderOpen and closed disk bundles, Ann. of Math.83 (1966), p. 218-230. Zbl0148.17503MR189058
  6. 6 J. Cerf, Groupes d'automorphismes et groupes de difféomorphismes des variétés compactes de dimension 3, Bull. Soc. Math. France, 87 (1959), p. 319-329 Zbl0099.39106MR116351
  7. 7 A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math, 3 (1959) , p. 285-305. Zbl0088.15301MR101521
  8. 8 A. Dold und R. Thom, Quasifaserungen und unendliche Symmetrische Produkte, Ann. of Math. (2) 67 (1958), p. 239-281. Zbl0091.37102MR97062
  9. 9 M. Kervaire and J. Milnor, Groups of homotopy spheres, I, Ann. of Math.77 (1963), p. 504-537. Zbl0115.40505MR148075
  10. 10 R.C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of math.89 (1969), p. 575-582. Zbl0176.22004MR242165
  11. 11 R.C. Kirby and L.C. Siebenmann, For manifolds the hauptvermutung and the triangulation conjecture are false, notices Amer. Math. Soc.16 (1969), p. 695. Zbl0189.54701
  12. 12 J.M. Kister, Microbundles are fibre bundles, Ann. Of Math.80 (1964), p. 190-199. Zbl0131.20602MR180986
  13. 13 N.H. Kuiper and R.K. Lashof, Microbundles and bundles, I, Invent. Math.1 (1966), p. 1-17. Zbl0142.21901MR216506
  14. 14 J.A. Lees,Immersions and surgeries of topological manifolds, Bull. Amer. Soc.75 (1969), p. 529-534. Zbl0176.21703MR239602
  15. 15 J. Milnor, Microbundles, Part I, Topology3, Suppl. 1 (1964), p. 53-80. Zbl0124.38404MR161346
  16. 16 L.C. Siebenmann, Topological manifolds, Actes du Congrès Intern. Math. (1970), tome 2, p. 133-163. Zbl0224.57001MR423356
  17. 17 S. Smale, On the structure of manifolds, Amer. J. of Math.84 (1962), p. 387-399. Zbl0109.41103MR153022
  18. 18 N.E. Steenrod, The topology of fibre bundles,Princeton Math. Ster.14 (1951). Zbl0054.07103
  19. 19 N.E. Steenrod, Milgram's classifying space of a topological group, Topology7 (1968), p. 349-368. Zbl0177.51601MR233353
  20. 20 R.E. Williamson, Jr., Cobordism of combinacorial manifolds, Ann. of math.83, (1966), p. 1-33. Zbl0137.42901MR184242

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.