Deux espaces de Banach et leurs modèles étalés

Bernard Beauzamy

Publications du Département de mathématiques (Lyon) (1980)

  • Volume: 17, Issue: 2, page 1-56
  • ISSN: 0076-1656

How to cite

top

Beauzamy, Bernard. "Deux espaces de Banach et leurs modèles étalés." Publications du Département de mathématiques (Lyon) 17.2 (1980): 1-56. <http://eudml.org/doc/274203>.

@article{Beauzamy1980,
author = {Beauzamy, Bernard},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {James space; Tsirelson space; Orlicz space; spreading model; Tsirelson- James space},
language = {fre},
number = {2},
pages = {1-56},
publisher = {Université Claude Bernard - Lyon 1},
title = {Deux espaces de Banach et leurs modèles étalés},
url = {http://eudml.org/doc/274203},
volume = {17},
year = {1980},
}

TY - JOUR
AU - Beauzamy, Bernard
TI - Deux espaces de Banach et leurs modèles étalés
JO - Publications du Département de mathématiques (Lyon)
PY - 1980
PB - Université Claude Bernard - Lyon 1
VL - 17
IS - 2
SP - 1
EP - 56
LA - fre
KW - James space; Tsirelson space; Orlicz space; spreading model; Tsirelson- James space
UR - http://eudml.org/doc/274203
ER -

References

top
  1. [1] A. Andrew, Spreading Basic Sequences and subspaces of James' Quasi-reflexive space. A paraître à Math. Scand. Zbl0439.46010
  2. [2] A. Baernstein, On reflexivity and summability. Studia Math.42 (1972) - 91-94. Zbl0206.42104MR305044
  3. [3] B. Beauzamy, Banach-Saks properties and Spreading Models, Math. Scandinavica, 44 (1979) p. 357-384. Zbl0427.46007MR555227
  4. [4] B. Beauzamy et B. Maurey, Iteration of Spreading ModelsArkiv für Math. vol. 17 (1979) n° 2. p. 193-198. Zbl0477.46018MR608314
  5. [5] A. Brunel et L. Sucheston, On B. Convex Banach Spaces, Math. System Theory7 (1974). p. 294-299. Zbl0323.46018MR438085
  6. [6] A. Brunel et L. Sucheston, On J- convexity and ergodic super-properties of Banach spaces, Trans. American Math. Soc., 204 (1975). p. 79-90. Zbl0273.46013MR380361
  7. [7] R. C. James, Bases and Reflexivity of Banach Spaces, Ann. of Math.52 (1950), p. 518-527. Zbl0039.12202MR39915
  8. [8] J. Lindenstrauss. L. Tzafriri, Classical Banach Spaces. (T. 1 : Sequences spaces). Springer Verlag. Zbl0852.46015MR415253
  9. [9] E. Odell. H. P. Rosenthal, A double dual characterization of separable Banach spaces containing 1 . Israël J. of Math.20 (1975). p. 375-384. Zbl0312.46031MR377482
  10. [10] J. Schreier, Ein gegenbiespel Zur Theorie der schwachen Konvergenz, Studia Math.2 (1930). p. 58-62. Zbl56.0932.02JFM56.0932.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.