Modèles étalés des espaces de Banach

B. Beauzamy; J. T. Lapreste

Publications du Département de mathématiques (Lyon) (1983)

  • Issue: 4A, page 1-199
  • ISSN: 0076-1656

How to cite

top

Beauzamy, B., and Lapreste, J. T.. "Modèles étalés des espaces de Banach." Publications du Département de mathématiques (Lyon) (1983): 1-199. <http://eudml.org/doc/273470>.

@article{Beauzamy1983,
author = {Beauzamy, B., Lapreste, J. T.},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {spreading models; Banach-Saks properties; M-properties; stable Banach spaces},
language = {fre},
number = {4A},
pages = {1-199},
publisher = {Université Claude Bernard - Lyon 1},
title = {Modèles étalés des espaces de Banach},
url = {http://eudml.org/doc/273470},
year = {1983},
}

TY - JOUR
AU - Beauzamy, B.
AU - Lapreste, J. T.
TI - Modèles étalés des espaces de Banach
JO - Publications du Département de mathématiques (Lyon)
PY - 1983
PB - Université Claude Bernard - Lyon 1
IS - 4A
SP - 1
EP - 199
LA - fre
KW - spreading models; Banach-Saks properties; M-properties; stable Banach spaces
UR - http://eudml.org/doc/273470
ER -

References

top
  1. [1] Aldous D., Unconditional bases and Martingales in L p ( F ) , Math. Proc.Cambridge (1979), 85-117. Zbl0389.46027MR510406
  2. [2] Aldous D., Subspaces of L 1 via random measures. Trans. A.M.S.267 (1981) n° 2, 445-463. Zbl0474.46007MR626483
  3. [3] Altschuler Z., A Banach space with a symmetric basis which contains n o p or c o ..., Compositio Math.35 (1977), 189-195. Zbl0381.46008
  4. [4] Altschuler Z., Casazza P.G., Bor-Luh Lin, On symmetric basic sequences in Lorentz sequence spaces. Israël J. of Maths15/2 (1973), 140-155. Zbl0264.46011MR328553
  5. [5] Andrew A., Spread ing basic sequences and subspaces of James' quasi reflexive space. Math. Scand.48 (1981), 108-118 Zbl0439.46010MR621422
  6. [6] Baernstein A., On reflexivity and summability. Studia Math.42 (1972), 91-94. Zbl0206.42104MR305044
  7. [7] Banach S. - Saks S., Sur la convergence forte dans les champs L p Studia Math.2 (1930), 51-57. Zbl56.0932.01JFM56.0932.01
  8. [8] Beauzamy B., Banach-Saks properties and Spreading Models. Math. Scand.44 (1979), 357-384. Zbl0427.46007MR555227
  9. [9] Beauzamy B., Convergence ou divergence presque sûres des sommes de Cesàro dans un espace de Banach. Note C.R.A.S.Paris, t. 287 (25 sept. 78), 457-459. Zbl0402.60011MR517342
  10. [10] Beauzamy B., Espaces d'Interpolation réels, Topologie et Geométrie. Lecture Notes n° 666, Springer-Verlag. Zbl0382.46021
  11. [11] Beauzamy B., Deux espaces de Banach et leurs modèles étalés. Publ. du Dép. de Math.. Univ. Lyon I, 1980, t. 17/2. Zbl0526.46022
  12. [11 b] Beauzamy B., Sous-espaces de Modèles étalés et structures cycliquement reproduites dans les espaces de Banach. Bull. des Sc. Math., 1982. Zbl0508.46012
  13. [12] Beauzamy B., Introduction to Banach spaces and their geometry. North Holland, Collection "Notas de Matematica", vol. 68, Août 1982. Zbl0491.46014MR670943
  14. [13] Beauzamy B., Maurey B., Iteration of Speading Models. Arkiv for Math17/2 (1979) 193-198. Zbl0477.46018MR608314
  15. [14] Bessaga C. Pelczynski A., On bases and unconditional convergence of series in Banach spaces. Studia Math.17 (1958) 165-174. Zbl0084.09805MR115071
  16. [15] Bourgain J., On the Banach-Saks property in Lebesgue spaces. A paraître. 
  17. [16] Brunel A., Espaces associés à une suite bornée dans un espace de Banach. Séminaire Maurey-Schwartz, exposés 15, 16, 18. Ecole Polytechnique. 1973/74. Zbl0305.46024MR405070
  18. [17] Brunel A., Sucheston L., On B-convex Banach spaces. Math System Theory, 7 (1974), 294-299. Zbl0323.46018MR438085
  19. [18] Brunel A., Sucheston L., On 𝒥 -convexity and ergodic super-properties of Banach spaces. Trans. A.M.S., 204 (1975), 79-90. Zbl0273.46013MR380361
  20. [19] Brunel A., Fong H., Sucheston L., An ergodic super-property of Banach spaces, defined by a class of matrices. Zbl0272.47008
  21. [20] Casazza P.G., Tzirelsohn's spaces. Dep. of Math.Univ. of Alabama, 1982. 
  22. [21] Casazza P.G., Johnson W.B., Tzafriri L.T., Tzirelsohn's space (in preparation). 
  23. [22] Casazza P.G., Lin B.L., Lohman R.H., On non-reflexive Banach spaces which contain no c o or p , Can. J. of Math.32/6 (1980) 1382-1389. Zbl0462.46006MR604693
  24. [23] Casazza P.G., Lohman R.H., A general construction of spaces of the type of R.C. James, Can. J. of Math, 27 (1975) 1263-1270. Zbl0314.46017MR399817
  25. [24] Casazza P.G., Odell E., Tzirelsohn's space II (in preparation). 
  26. [25] Dacunha-Castelle D., Krivine J.L., Application des ultraproduits à l'étude des espaces et des Algèbres de Banach, Studia Math.41 (1973), 315-334. Zbl0275.46023MR305035
  27. [26] Dor L.E., On sequences spanning a complex 1 -space, Proc. A.M.S.47 (1975), 515-516. Zbl0296.46014MR358308
  28. [27] Dowson H.P., Spectral theory of linear operators, Academic Press1977. Zbl0384.47001MR511427
  29. [28] Erdos P., Magidor M., A note on regular methods of summability and the Banach-Saks property. Proc. A.M.S., 59 (1976). Zbl0355.40007MR430596
  30. [29] Farahat J., Espaces de Banach contenant 1 , d’après H.P. RosenthalSéminaire Maurey-Schwartz, exposé 1973-74, Ecole Polytechnique, Palaiseau. Zbl0289.46014
  31. [30] Figiel T., Johnson W.B., A uniformly convex space which contains no p . Compositio Math.29 (1974), 179-190. Zbl0301.46013MR355537
  32. [31] Garling D.J.H., Stable Banach Spaces. Lecture Notes, University of Cambridge, 1981. 
  33. [32] Guerre S., La propriété de Banach-Saks ne passe pas de E à L 2 ( E ) , d'après J. Bourgain. Exposé VIII, Séminaire d'Analyse fonctionnelle1979/80. Ecole Polytechnique. Palaiseau. Zbl0454.46021MR604391
  34. [33] Guerre S., Lapreste J.T., Quelques propriétés des modèles étalés sur un espace de Banach. Ann. I.H.P., Section B, 16-4 (1980) 339-347. Zbl0454.46017MR603327
  35. [34] Guerre S., Lapreste J.T., Quelques propriétés des espaces de Banach stables. Israël J. of Math39-3 (1981), 247-254. Zbl0469.46015MR636893
  36. [35] James R.C., Bases and reflexivity of Banach spaces. Ann. of Math., 52 (1950), 518-527. Zbl0039.12202MR39915
  37. [36] James R.C., A non-reflexive Banach space isometric to its second conjugate. Proc. Nat. Acad. Sc. U.S.A.37 (1951) 174-177. Zbl0042.36102MR44024
  38. [37] James R.C., Weak compactness and reflexivity. Israël J. of Math2 (1964) 101-109. Zbl0127.32502MR176310
  39. [38] James R.C., Uniformly non-square Banach spaces. Ann. of Maths.80 (1964), 542-550. Zbl0132.08902MR173932
  40. [39] James R.C., Some self-dual properties of normed linear spaces. Ann. Math. Studies, 69 (1972), 159-175. Zbl0233.46025MR454600
  41. [40] Johnson W.B., Rosenthal H.P., On W * basic sequences and their applications to the study of Banach spaces. Studia Math.43 (72), 77-92. Zbl0213.39301MR310598
  42. [41] Kadec M.I., Pelczynski A., Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces. Studia Math25 (1965), 297-323. Zbl0135.34504MR181886
  43. [42] Kakutani S., Weak convergence in uniformly convex Banach spaces. Tohuku Math. J.45 (1938), 188-193. Zbl64.0369.01JFM64.0369.01
  44. [43] Krasnoelski M.A., Rutikii Y.B., Convex functions and Orlicz spaces, Groningen, Netherlands, 1961 (traduit du Russe). 
  45. [44] Krivine J.L., Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. of Math., 104 (1976), 1-29. Zbl0329.46008MR407568
  46. [45] Krivine J.L., Plongement de p dans certains espaces de Banach. Exposé XII séminaire d'Analyse fonctionnelle1979-80. Ecole Polytechnique. Palaiseau. Zbl0445.46016
  47. [46] Krivine J.L., Maurey B., Espaces de Banach stables. Israël J. of Math.39-4 (1981), 273-281. Zbl0504.46013MR636897
  48. [47] Lapreste J.T., Suites écartables dans les espaces de Banach Exposé XX, Séminaire sur la géométrie des Espaces de Banach, 1977-78. Ecole Polytechnique. Palaiseau Zbl0386.46019MR520218
  49. [48] Lapreste J.T., Suites asymptotiquement inconditionnelles. Exposé XXX, Séminaire d'Analyse fonctionnelle, 1978-79. Ecole Polytechnique. Palaiseau. Zbl0409.46019MR520218
  50. [49] Lemberg H., Nouvelle démonstration d’un théorème de J.L. Krivine sur la finie représentation de p dans un espace de Banach. Israël J. of Math., vol. 39, n°4 (1981), 341-348. Zbl0466.46023MR636901
  51. [50] Lidenstrauss-Rosenthal, p -spaces, Israël J. of Math.7 (1969), 325-349. Zbl0205.12602MR270119
  52. [51] Lidenstrauss J., Tzafriri L.T., Classical Banach spaces, I et II, Springer-Verlag. 1977. Zbl0362.46013MR500056
  53. [52] Milman V.D., The geometric theory of Banach spaces. English translation : Russian Math. Surveys, 25 (1970), 111-170. Zbl0221.46015MR280985
  54. [53] Odell E., Applications of Ramsey theorem to Banach spaces theory. University of Texas at Austin-Press, 1981. Zbl0468.46009MR606226
  55. [54] Odell E., Wage W., Weakly null normalized sequences equivalent to unit basis of c o . Preprint, University of Texas at Austin. 
  56. [55] Partington J.R., Almost sure summability of subsequences of Banach spaces. Studia Math.71 (1982), 23-35. Zbl0482.46009MR651323
  57. [56] Ramsey F.P., On a problem of formal logic. Proc. London Math. Soc, 2-30 (1929), 264-286. MR1576401JFM55.0032.04
  58. [57] Ropars Y., Modèles étalés des Espaces de Banach. Thèse 3è cycle Université de Paris7, mai 1983. 
  59. [58] Rosenthal H.P., A characterization of Banach spaces not containing 1 . Proc. Nat. Acad. Sc. U.S.A.71 (1974), 2411-2413. Zbl0297.46013MR358307
  60. [59] Rosenthal H.P., Weakly independent sequences and the Banach-Saks property. Proc. of the Durham Symposium, Juillet 1975. 
  61. [60] Schachermayer W., A Banach space E such that L 2 ( E ) is not Banach-Saks. Israël Journal of Math., 40, 3-4 (1981), 340-344. Zbl0486.46021
  62. [61] Schahermayer W., The class of Banach spaces, which do not have co as a spreading model, is not hereditary. A paraître. Zbl0518.46013
  63. [62] Schreier J., Eim gegensbiespel zur Theorie der Scwachen Konvergenz. Studia Math.2 (1930), 58-62. JFM56.0932.02
  64. [63] Simmons S., Local reflexivity and ( p , q ) -summing maps. Math. Ann.198, (1972), 335-344. Zbl0231.46033MR326353
  65. [64] Singer I., Bases in Banach spaces I et II ; Springer-Verlag. 1970. Zbl0198.16601MR298399
  66. [65] Stern J., Propriétés locales et ultrapuissances d'espaces de Banach. Exposés 7 et 8. Séminaire Maurey-Schwartz1974-75. Ecole Polytechnique. Palaiseau. Zbl0318.46027
  67. [66] Szlenk W., Sur les suites faiblement convergentes dans l’espace L . Studia Math.25 (1965), 337-341. Zbl0131.11505MR201956
  68. [67] Tzirelson B.S., Not every Banach space contains p or c o . Functional Anal. Appl.8 (1974), 138-141 (Traduit du Russe). Zbl0296.46018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.