Applications of Factor Categories to Completely Indecomposable Modules

Manabu Harada

Publications du Département de mathématiques (Lyon) (1974)

  • Volume: 11, Issue: 2, page 19-104
  • ISSN: 0076-1656

How to cite

top

Harada, Manabu. "Applications of Factor Categories to Completely Indecomposable Modules." Publications du Département de mathématiques (Lyon) 11.2 (1974): 19-104. <http://eudml.org/doc/274207>.

@article{Harada1974,
author = {Harada, Manabu},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
number = {2},
pages = {19-104},
publisher = {Université Claude Bernard - Lyon 1},
title = {Applications of Factor Categories to Completely Indecomposable Modules},
url = {http://eudml.org/doc/274207},
volume = {11},
year = {1974},
}

TY - JOUR
AU - Harada, Manabu
TI - Applications of Factor Categories to Completely Indecomposable Modules
JO - Publications du Département de mathématiques (Lyon)
PY - 1974
PB - Université Claude Bernard - Lyon 1
VL - 11
IS - 2
SP - 19
EP - 104
LA - eng
UR - http://eudml.org/doc/274207
ER -

References

top
  1. [1] G. Azumaya, Correction and supplementaires to my paper concering Krull-Remak-Schmidt'theorem, Nagoya Math. J.1 (1950). Zbl0040.01201MR37832
  2. [2] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc.95 (1960). Zbl0094.02201MR157984
  3. [3] S.U. Chase, Direct products of modules, Trans. Amer. Math. Soc.97 (1960). Zbl0100.26602MR120260
  4. [4] P. Crawley and B. Jonnson, Refinements for infinite direct decomposition of algebraic system, Pacific J. Math.14 (1964). Zbl0134.25504MR169806
  5. [5] C. Ehresmann, Catégories et structures, Dunod, Paris, 1965. Zbl0136.25801MR213410
  6. [6] S. Elliger, Zu dem Satz von Krull-Remak-Schmidt-Azumaya, Math. Z.115 (1970). Zbl0188.09001MR269687
  7. [7] S. Elliger, Interdirekte Summen von Moduln, J. Algebra, 18 (1971). Zbl0231.16016MR276262
  8. [8] C. Faith, Lectures on Injective Modules and Quotient Rings, Lecture Notes in Math.49 (1967). Zbl0162.05002MR227206
  9. [9] C. Faith and E.A. Walker, Direct sum representations of injective modules, J. ALGEBRA5 (1967). Zbl0173.03203MR207760
  10. [10] J. Fort, Sommes directes de sous-modules co-irréductibles d'un module, Math. Z.103 (1968). Zbl0155.07501MR225808
  11. [11] P. Freyd, Abelian categories, New York, Harper and Row, 1964. Zbl0121.02103MR166240
  12. [12] L. Fuchs, On quasi-injective modules, Annali della Scuola Norm. Sup. Pisa, 23 (1969). Zbl0191.03803MR258873
  13. [13] P. Gabriel and U. Oberst, Spektralkategorien und regulare Rings in Von Neumann Sinn, Math. Z.92 (1966). Zbl0136.25602MR225848
  14. [14] P. Gabriel and N. Popescu, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C.R. Acad. Sci.Paris, 258 (1964). Zbl0126.03304
  15. [15] A. W. Goldie, Torsion-Free modules and rings, J. Algebra, 1 (1964). Zbl0145.26804MR164991
  16. [16] M. Harada, On semi-simple abelian categories , Univ. de Buenos Aires (Osaka J. Math.5 (1968)). Zbl0181.03001MR252477
  17. [17] M. Harada, and Y. Sai, On categories of indecomposable modules I, Osaka J. Math.7 (1970). Zbl0248.18018MR286859
  18. [18] M. Harada, On categories of indecomposable modules II, Osaka J. Math.8 (1971). Zbl0248.18019MR304431
  19. [19] M. Harada and H. Kanbara, On categories of projective modules, Osaka J. Math., 9 (1971). Zbl0262.16030MR318223
  20. [20] M. Harada, Supplementary remarks on categories of indecomposable modules, Osaka J. Math.9 (1972). Zbl0262.16031MR304432
  21. [21] M. Harada, Note on categories of indecomposable modules, Pub. Math. Univ. Lyon. T. 9. (1972). Zbl0303.16014MR338076
  22. [22] M. Harada, On perfect categories I~IV, Osaka J. Math.10 (1973). Zbl0293.18014MR367017
  23. [23] R.E. Johnson and E.T. Wong, Self-injective rings, Can. Math. Bull.2 (1969). Zbl0090.25202MR106922
  24. [24] K. Kanbara, Note on Krull-Remak-Schmidt-Azumaya' theorem, Osaka J. Math.9 (1972). Zbl0251.16019
  25. [25] U.S. Kahlon, Problem of Krull-Remak-Schmidt-Azumaya-Matlis, J. Indian Math. Soc.35 (1971). Zbl0267.16013MR306262
  26. [26] I. Kaplansky, Projective modules, Ann. of Math.68 (1958). Zbl0083.25802MR100017
  27. [27] G.M. Kelly, On the radical of a category, J. Austral.Math. Soc.4 (1964). Zbl0124.01501MR170922
  28. [28] E. Mares, Semi-perfect modules, Math. Z.83 (1963). Zbl0131.27401MR157985
  29. [29] E. Matlis, Injectives modules over noetherian rings, Pacific J. Math.8 (1958). Zbl0084.26601MR99360
  30. [30] B. Mitchell, Theory of categories, Academic Press, 1965. Zbl0136.00604MR202787
  31. [31] Y. Miyashita, Quasi-injective modules, Perfect modules and a theorem for modular lattices, J. Fac. Sci. Hokkaido Univ.12 (1966). Zbl0142.27904MR213390
  32. [32] Z. Papp, On algebraically closed modules, Publ. Math. Debrecen6 (1959). Zbl0090.02405MR121390
  33. [33] E.M. Patterson, On the radical of rings of row-finite matrices, Proc. Royal Soc. Edinburgh66 (1962). Zbl0145.27103MR142582
  34. [34] R.S. Pierce, Lectures on Rings and Modules (Closure Spaces with Applications to Ring Theory), Lecture Notes in Math.246Springer-Verlag. Zbl0229.16019MR371787
  35. [35] Y. Sai, On regular categories, Osaka J. Math.7 (1970). Zbl0261.18009MR276300
  36. [36] N.E. Sexauer and J.E. Warnock, The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc.139 (1965). Zbl0191.31803MR238889
  37. [37] R. Ware and J. Zelmanowitz, The radical of the endomorphism ring of a projective modules, Proc. Amer. Math. Soc.26 (1970). Zbl0204.36301MR262281
  38. [38] R.B. Warfield Jr., A Krull-Remak-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc.22 (1969). Zbl0176.31401MR242886
  39. [39] R.B. Warfield Jr., Decomposition of injective modules, Pacific J. Math.31 (1969). Zbl0185.04102MR249467
  40. [40] K. Yamagata, Non-singular and Matlis'problem, Sci. Rep. TokyoKyoiku-Daigaku, 11 (1972). Zbl0265.16015MR314905
  41. [41] K. Yamagata, A note on a Problem of Matlis, Proc Japan Acad. Sci.49 (1973). Zbl0276.16024MR396670
  42. [42] K. Yamagata, Completely decomposable modules which have the exchange property, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.