Applications of Factor Categories to Completely Indecomposable Modules

Manabu Harada

Publications du Département de mathématiques (Lyon) (1974)

  • Volume: 11, Issue: 2, page 19-104
  • ISSN: 0076-1656

How to cite


Harada, Manabu. "Applications of Factor Categories to Completely Indecomposable Modules." Publications du Département de mathématiques (Lyon) 11.2 (1974): 19-104. <>.

author = {Harada, Manabu},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
number = {2},
pages = {19-104},
publisher = {Université Claude Bernard - Lyon 1},
title = {Applications of Factor Categories to Completely Indecomposable Modules},
url = {},
volume = {11},
year = {1974},

AU - Harada, Manabu
TI - Applications of Factor Categories to Completely Indecomposable Modules
JO - Publications du Département de mathématiques (Lyon)
PY - 1974
PB - Université Claude Bernard - Lyon 1
VL - 11
IS - 2
SP - 19
EP - 104
LA - eng
UR -
ER -


  1. [1] G. Azumaya, Correction and supplementaires to my paper concering Krull-Remak-Schmidt'theorem, Nagoya Math. J.1 (1950). Zbl0040.01201MR37832
  2. [2] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc.95 (1960). Zbl0094.02201MR157984
  3. [3] S.U. Chase, Direct products of modules, Trans. Amer. Math. Soc.97 (1960). Zbl0100.26602MR120260
  4. [4] P. Crawley and B. Jonnson, Refinements for infinite direct decomposition of algebraic system, Pacific J. Math.14 (1964). Zbl0134.25504MR169806
  5. [5] C. Ehresmann, Catégories et structures, Dunod, Paris, 1965. Zbl0136.25801MR213410
  6. [6] S. Elliger, Zu dem Satz von Krull-Remak-Schmidt-Azumaya, Math. Z.115 (1970). Zbl0188.09001MR269687
  7. [7] S. Elliger, Interdirekte Summen von Moduln, J. Algebra, 18 (1971). Zbl0231.16016MR276262
  8. [8] C. Faith, Lectures on Injective Modules and Quotient Rings, Lecture Notes in Math.49 (1967). Zbl0162.05002MR227206
  9. [9] C. Faith and E.A. Walker, Direct sum representations of injective modules, J. ALGEBRA5 (1967). Zbl0173.03203MR207760
  10. [10] J. Fort, Sommes directes de sous-modules co-irréductibles d'un module, Math. Z.103 (1968). Zbl0155.07501MR225808
  11. [11] P. Freyd, Abelian categories, New York, Harper and Row, 1964. Zbl0121.02103MR166240
  12. [12] L. Fuchs, On quasi-injective modules, Annali della Scuola Norm. Sup. Pisa, 23 (1969). Zbl0191.03803MR258873
  13. [13] P. Gabriel and U. Oberst, Spektralkategorien und regulare Rings in Von Neumann Sinn, Math. Z.92 (1966). Zbl0136.25602MR225848
  14. [14] P. Gabriel and N. Popescu, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C.R. Acad. Sci.Paris, 258 (1964). Zbl0126.03304
  15. [15] A. W. Goldie, Torsion-Free modules and rings, J. Algebra, 1 (1964). Zbl0145.26804MR164991
  16. [16] M. Harada, On semi-simple abelian categories , Univ. de Buenos Aires (Osaka J. Math.5 (1968)). Zbl0181.03001MR252477
  17. [17] M. Harada, and Y. Sai, On categories of indecomposable modules I, Osaka J. Math.7 (1970). Zbl0248.18018MR286859
  18. [18] M. Harada, On categories of indecomposable modules II, Osaka J. Math.8 (1971). Zbl0248.18019MR304431
  19. [19] M. Harada and H. Kanbara, On categories of projective modules, Osaka J. Math., 9 (1971). Zbl0262.16030MR318223
  20. [20] M. Harada, Supplementary remarks on categories of indecomposable modules, Osaka J. Math.9 (1972). Zbl0262.16031MR304432
  21. [21] M. Harada, Note on categories of indecomposable modules, Pub. Math. Univ. Lyon. T. 9. (1972). Zbl0303.16014MR338076
  22. [22] M. Harada, On perfect categories I~IV, Osaka J. Math.10 (1973). Zbl0293.18014MR367017
  23. [23] R.E. Johnson and E.T. Wong, Self-injective rings, Can. Math. Bull.2 (1969). Zbl0090.25202MR106922
  24. [24] K. Kanbara, Note on Krull-Remak-Schmidt-Azumaya' theorem, Osaka J. Math.9 (1972). Zbl0251.16019
  25. [25] U.S. Kahlon, Problem of Krull-Remak-Schmidt-Azumaya-Matlis, J. Indian Math. Soc.35 (1971). Zbl0267.16013MR306262
  26. [26] I. Kaplansky, Projective modules, Ann. of Math.68 (1958). Zbl0083.25802MR100017
  27. [27] G.M. Kelly, On the radical of a category, J. Austral.Math. Soc.4 (1964). Zbl0124.01501MR170922
  28. [28] E. Mares, Semi-perfect modules, Math. Z.83 (1963). Zbl0131.27401MR157985
  29. [29] E. Matlis, Injectives modules over noetherian rings, Pacific J. Math.8 (1958). Zbl0084.26601MR99360
  30. [30] B. Mitchell, Theory of categories, Academic Press, 1965. Zbl0136.00604MR202787
  31. [31] Y. Miyashita, Quasi-injective modules, Perfect modules and a theorem for modular lattices, J. Fac. Sci. Hokkaido Univ.12 (1966). Zbl0142.27904MR213390
  32. [32] Z. Papp, On algebraically closed modules, Publ. Math. Debrecen6 (1959). Zbl0090.02405MR121390
  33. [33] E.M. Patterson, On the radical of rings of row-finite matrices, Proc. Royal Soc. Edinburgh66 (1962). Zbl0145.27103MR142582
  34. [34] R.S. Pierce, Lectures on Rings and Modules (Closure Spaces with Applications to Ring Theory), Lecture Notes in Math.246Springer-Verlag. Zbl0229.16019MR371787
  35. [35] Y. Sai, On regular categories, Osaka J. Math.7 (1970). Zbl0261.18009MR276300
  36. [36] N.E. Sexauer and J.E. Warnock, The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc.139 (1965). Zbl0191.31803MR238889
  37. [37] R. Ware and J. Zelmanowitz, The radical of the endomorphism ring of a projective modules, Proc. Amer. Math. Soc.26 (1970). Zbl0204.36301MR262281
  38. [38] R.B. Warfield Jr., A Krull-Remak-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc.22 (1969). Zbl0176.31401MR242886
  39. [39] R.B. Warfield Jr., Decomposition of injective modules, Pacific J. Math.31 (1969). Zbl0185.04102MR249467
  40. [40] K. Yamagata, Non-singular and Matlis'problem, Sci. Rep. TokyoKyoiku-Daigaku, 11 (1972). Zbl0265.16015MR314905
  41. [41] K. Yamagata, A note on a Problem of Matlis, Proc Japan Acad. Sci.49 (1973). Zbl0276.16024MR396670
  42. [42] K. Yamagata, Completely decomposable modules which have the exchange property, to appear. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.