Une approche métrique de la rétraction dans les ensembles ordonnés et les graphes

Maurice Pouzet

Publications du Département de mathématiques (Lyon) (1985)

  • Volume: 2/B, Issue: 2B, page 59-89
  • ISSN: 0076-1656

How to cite

top

Pouzet, Maurice. "Une approche métrique de la rétraction dans les ensembles ordonnés et les graphes." Publications du Département de mathématiques (Lyon) 2/B.2B (1985): 59-89. <http://eudml.org/doc/274208>.

@article{Pouzet1985,
author = {Pouzet, Maurice},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {distance function with values in an ordered semigroup; absolute retracts with respect to nonexpansive mappings; Tarski's fixed point theorem; fixed point property; Ramsey's theorem; contractive mapping},
language = {fre},
number = {2B},
pages = {59-89},
publisher = {Université Claude Bernard - Lyon 1},
title = {Une approche métrique de la rétraction dans les ensembles ordonnés et les graphes},
url = {http://eudml.org/doc/274208},
volume = {2/B},
year = {1985},
}

TY - JOUR
AU - Pouzet, Maurice
TI - Une approche métrique de la rétraction dans les ensembles ordonnés et les graphes
JO - Publications du Département de mathématiques (Lyon)
PY - 1985
PB - Université Claude Bernard - Lyon 1
VL - 2/B
IS - 2B
SP - 59
EP - 89
LA - fre
KW - distance function with values in an ordered semigroup; absolute retracts with respect to nonexpansive mappings; Tarski's fixed point theorem; fixed point property; Ramsey's theorem; contractive mapping
UR - http://eudml.org/doc/274208
ER -

References

top
  1. [1] N. Aronszajn, P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math.6 (1956), p. 405-439. Zbl0074.17802MR84762
  2. [2] K. Baclawski and A. Bjorner, Fixed points in partially ordered sets, Advances in Mathematics, 31 (1979), p. 263-287. Zbl0417.06002MR532835
  3. [3] B. Banaschewski and G. Bruns, Categorical characterization of the Mac Neille completion, Archiv. der Math.Basel18 (1967), p. 369-377. Zbl0157.34101MR221984
  4. [4] L.M. Blumenthal, K. Menger, Studies in geometry 1970, W.H. Freeman and Co.San Francisco. Zbl0204.53401MR273492
  5. [5] U. Cerruti and U. Hohle, Categorical fundations of probabilistic microgeometry, Séminaire de "Mathématique floue"LYON (1983-1984) p. 189-246. 
  6. [6] D. Duffus and I. Rival, A structure theory for ordered sets, J. of Discrete Math.35 (1981), P. 53-118. Zbl0459.06002MR620665
  7. [7] D. Duffus and M. Pouzet, Representing ordered sets by chains, in : Orders : Descriptions and Role (M. Pouzet and D. Richard, eds). Annals of Discrete Math.23 (1984) p. 81-98. Zbl0554.06002MR779846
  8. [8] J. Elton, Pei-Kee-Lin, E. Odell and S. Szarek, Remarks on the fixed point problem for non expansive maps in Fixed Points and non expansive mappings (Sine Ed.) Contemporary Math. Vol. 18, (1983), p. 87-120. Zbl0528.47040MR728595
  9. [9] M. Frechet, Rend. Circ. Math. Palermo, Vol. 22 (1906), p. 6. 
  10. [10] M. Frechet, Les espaces abstraits, Paris1928. JFM51.0456.03
  11. [11] F. Hausdorff, Grundzüge der Mengenlehre, 1914, Leipzig. JFM45.0123.01
  12. [12] P. Hell, Absolute retracts of graphs, Lecture notes406 (1974) p. 291-301. Zbl0296.05101MR401523
  13. [13] P. Hell, Graph retractions, Atti dei conveigni lincei17, teorie combinatorie (1976) p. 263-268. Zbl0362.05072MR543779
  14. [14] P. Hell, Rétractions de graphes. PhD. Université de Montréal, Juin 1972, 148 pages. 
  15. [15] P. Hell and I. Rival, Absolute retracts and varieties of reflexive graphs, preprint, 1983. Zbl0627.05039MR905743
  16. [16] D. Higgs, Injectivity in the topos of complete Heyting algebra valued sets, Canadian J. Of Math.36 (1984) p. 550-568. Zbl0541.18003MR752984
  17. [17] G. Higman, Ordering by divisibility in abstract algebra, Proc. London Math. Soc. (3) 2 (1952) p. 326-336. Zbl0047.03402MR49867
  18. [18] R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv.39 (1964) p. 65-76. Zbl0151.30205MR182949
  19. [19] V.I. Istratescu, Fixed point theory, an introduction. Math. and its applications, Vol. 7 (1981) D. Reidel. Zbl0465.47035MR620639
  20. [20] E. Jawhari, M. Pouzet, I. Rival, A classification of reflexive graphs : The use of "holes". Rapport de recherche du Laboratoire d'Algèbre ordinale et algorithmique, Lyon (1983). To appear in Canadian J. of Math. Zbl0618.05041MR873414
  21. [21] E. Jawhari, Les rétractions dans les graphes. Applications et généralisations, Thèse de 3ème cucle, n° 1318 (Juillet 1983). Lyon. 
  22. [22] J.L. Kelley, General Topology, (1955), Van Nostrand. Zbl0066.16604MR70144
  23. [23] W. A. Kirk, Fixed point theory for non expansive mapping, Lecture notes in math., 886 (1981) p. 484-505. Zbl0479.47049MR643024
  24. [24] E.W. Kiss, L. Marki, P. Prohle and W. Tholen, Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Scientiarum Mathematicarum Hungarica18 (1983), p. 79-141. Zbl0549.08001MR759319
  25. [25] J.B. Kruskal, The theory of well quasi ordering : a frequently discovered concept, J. Comb. Th. (A) 13, p. 197-305/ Zbl0244.06002MR306057
  26. [26] H. Macneille, Partially ordered sets. Trans. Amer. Math. Soc42 (1937) p. 416-460. Zbl0017.33904MR1501929JFM63.0833.04
  27. [27] D. Misane, Retracts absolus d'ensembles ordonnés et de graphes. Propriété du point fixe. Thèse de doctorat de 3ème cycle, n° 1571 (Septembre 1984), Lyon. 
  28. [28] P. Nevermann and R. Wille, The strong selection property and ordered sets of finite length, Alg. Univ.18 (1984) p. 18-28. Zbl0542.06001MR743455
  29. [29] R. Nowakowski and I. Rival, A fixed edge theorem for graphs with loops. J. Graph theory3 (1979) p. 339-350. Zbl0432.05030MR549690
  30. [30] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, J. of Discrete Math.43 (1983) p. 223-234. Zbl0511.05059MR685630
  31. [31] E. Pesh, Minimal extension of graphs to absolute retracts, preprint n° 839, July 1984. Technische Hoschule Darmstadt. Zbl0649.05050
  32. [32] M. Pons Valles, Contribucio a l'estudi d'estructures uniformes sobre conjunts ordenats, Thesis (1984), Barcelona. 
  33. [33] M. Pouzet, I. Rival, Every countable lattice is a retract of a direct product of chains, Alg. Univ.18 (1984) p. 295-307. Zbl0545.06005MR745494
  34. [34] M. Pouzet, Retracts, recent and old results on graphs, ordered sets and metric spaces. Circulating manuscript, 29 pages, Nov. 1983. Zbl0597.54028
  35. [35] A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques. Thèse de doctorat d'Etat, Univ. Paris VI (1983). 
  36. [36] A. Quilliot, An application of the Helly property to the partially ordered sets, J. Comb. Theory, série A, 35 (1983) p. 185-198. Zbl0515.06005MR712104
  37. [37] F.P. Ramsey, On a problem of formal logic. Proc London Math. Soc.30, p. 264-286. Zbl55.0032.04MR1576401JFM55.0032.04
  38. [38] I. Rival, A fixed point theorem for finite partially ordered sets, J. of Comb. theory (1976) p. 309-318. Zbl0357.06003MR419308
  39. [39] I. Rival, R. Wille, The smallest order variety containing all chains, Discrete Math., 35, p. 203-212. Zbl0467.06002MR620673
  40. [40] Z. Semadeni, Banach spaces of continuous functions, Vol. I. Monografie Matematyczne, Warsawa (1971). Zbl0225.46030MR296671
  41. [41] R. Sine, On non linear contractions in Sup. norm. spaces. Non linear analysis, TMA, 3 (1979) p. 885-890. Zbl0423.47035MR548959
  42. [42] R. Sine, Fixed points and non expansive mappings (R. Sine ed.) Contemporary Math. Vol. 18. AMS. Zbl1229.47001
  43. [43] D.R. Smart, Fixed point theorems, Cambridge tracts in Math.66 (1974) Cambrdige University Press. Zbl0297.47042MR467717
  44. [44] P.M. Soardi, Existence of fixed points of non expansive mappings in certain banach lattices, Proc. A.M.S. (1979) p. 25-29. Zbl0371.47048MR512051
  45. [45] A. Tarski, A lattice theoretical fixed point theorem and its applications. Pacific J. Math.5 (1955), p. 285-309. Zbl0064.26004MR74376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.