Éléments de la géométrie des octaves de Cayley

Claude Brada

Publications du Département de mathématiques (Lyon) (1986)

  • Volume: 2/D, Issue: 2D, page 1-90
  • ISSN: 0076-1656

How to cite

top

Brada, Claude. "Éléments de la géométrie des octaves de Cayley." Publications du Département de mathématiques (Lyon) 2/D.2D (1986): 1-90. <http://eudml.org/doc/274260>.

@article{Brada1986,
author = {Brada, Claude},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {exceptional Lie groups; Cayley algebra of octaves; exceptional Jordan algebra; projective plane of Cayley octaves; projective plane of octaves},
language = {fre},
number = {2D},
pages = {1-90},
publisher = {Université Claude Bernard - Lyon 1},
title = {Éléments de la géométrie des octaves de Cayley},
url = {http://eudml.org/doc/274260},
volume = {2/D},
year = {1986},
}

TY - JOUR
AU - Brada, Claude
TI - Éléments de la géométrie des octaves de Cayley
JO - Publications du Département de mathématiques (Lyon)
PY - 1986
PB - Université Claude Bernard - Lyon 1
VL - 2/D
IS - 2D
SP - 1
EP - 90
LA - fre
KW - exceptional Lie groups; Cayley algebra of octaves; exceptional Jordan algebra; projective plane of Cayley octaves; projective plane of octaves
UR - http://eudml.org/doc/274260
ER -

References

top
  1. [AE] J. André : Über nicht-Desarguessche Ebenen mit transitiver Translations gruppe. Math. Zeitschr. Bd.60, p. 156-186 (1954). Zbl0056.38503MR63056
  2. [BE] A.L. Besse : Manifolds all of whose geodesics are closed. Springer Verlag n°93 (1978). Zbl0387.53010MR496885
  3. [B-G] R. Brown, A. Gray : Riemannian manifolds with holonomy group Spin(9). Diff. geom., in honor of K. Yano, Kinokuniya, Tokyo, 1972, p. 41-59. Zbl0245.53020MR328817
  4. [BL] A. Borel : Le plan projectif des octaves et les sphères comme espaces homogènes, C.R.A.S.230 (1950), 1378-1380. Zbl0041.52203MR34768
  5. [BN] R. Brown : On generalized Cayley-Dickson algebras, Pacific jour. of Math. vol. 20 n°3, p. 415-422 (1967). Zbl0168.28501MR215891
  6. [BR] M. Berger : Géométrie (5 volumes). Paris: CEDIC - Nathan (1976). 
  7. [CN] E. Cartan : Sur certaines formes riemanniennes remarquables des géométries à groupe fondamentale simple. Ann. Ecole Norm. Sup.44, 345-467 (1927). Zbl53.0393.01MR1509283JFM53.0393.01
  8. [C-S] C. Chevalley, R. Schafer : The exceptional simple Lie algebras F4 and E6. Proc. Nat. Acad. Sci.U.S.A.36, 137-141 (1950). Zbl0037.02003MR34378
  9. [CY] C. Chevalley : Theory of Lie groups (2 vol.) Princeton Univ. Press1946. Zbl0946.22001
  10. [FL] H. Freudenthal : 1. Oktaven, Ausnahmegruppen und Oktavengeometrie. Math. Inst. der Rijks-universiteit, Utrecht, 1951 (mimeographed); new revised edition, 1960. Zbl0100.03006MR44533
  11. [FL] H. Freudenthal : 2. Zur ebenen Oktavengeometrie, Proc. Koninkl. Ned. Akad. Wetenschap. A56 (1953), 195-200. Zbl0053.01503MR56306
  12. [FL] H. Freudenthal : 3. Lie groups in the foundations of geometry. Advan. Math.1, 145-190 (1965) Zbl0125.10003MR170974
  13. [G-P-R] M. Günaydin, C. Piron, H. Ruegg : Moufang Plane and Octonionic Quantum Mechanics. Commun. Math. Phys.61, 69-85 (1978). Zbl0409.22018MR503050
  14. [HF] H Hopf : Ueber die Abbildungen von Sphären auf Sphären niedrigerer Dimensionen, Fund. Math., 25, 1935, p. 427-440. Zbl0012.31902JFM61.0622.04
  15. [HH] G. Hirsch : La géométrie projective et la topologie des espaces fibrés, Colloq. Intern.C.N.R.S. n°12 (1949), 35-42. Zbl0039.39801MR34581
  16. [HL] M. Hall : The theory of groups. New York : Mac Millan1959. Zbl0116.25403MR103215
  17. [HN] S. Helgason : Differential geometry and Symmetric Spaces. Pure and appl. Math.New York : Academic Press1962. Zbl0111.18101MR145455
  18. [JN] N. Jacobson : 1. Cayley numbers and normal simple Lie algebras of type G, Duke Math. J.5, 775-783 (1939). Zbl0022.19801MR598JFM65.0098.03
  19. [JN] N. Jacobson : 2. Composition algebras and their automorphisms, Rend. Circ. Math. Palermo (2) 7, 55-80 (1958). Zbl0083.02702MR101253
  20. [JN] N. Jacobson : 3 Some groups of transformations defined by Jordan algebras,. I: J. Reine Angew. Math.201, 178-195 (1959); Zbl0084.03601MR106936
  21. [JN] N. Jacobson : 3 Some groups of transformations defined by Jordan algebras,. II. J. Reine Angew. Math.204, 74-98 (1960); Zbl0142.26401MR159849
  22. [JN] N. Jacobson : 3 Some groups of transformations defined by Jordan algebras,.III J. Reine Angew. Math.207, 61-85 (1961). Zbl0142.26501MR159850
  23. [K-N] S. Kobayashi, K. Nomizu : Foundations of Differential Geometry (2 vol.) New York : Interscience Publishers1963 Zbl0175.48504MR152974
  24. [MG] R. Moufang : Alternativekörper und der Satz vom Vollständigen Vierseit. Abhandl. Math.Univ. Hamburg, 9, 207-222 (1933). Zbl0007.07205MR3069600JFM59.0551.03
  25. [SC] R. Schafer : 1. An introduction to Non associative Algebras. Pure and applied Math.New York : Academic Press1966. Zbl0145.25601MR210757
  26. [SC] R. Schafer : 2. On the algebras formed by the Cayley-Dickson process, Amer. J. Math.76, 435-446 (1954). Zbl0059.02901MR61098
  27. [ST] N. Steenrod : The topology of fibre bundles, Princeton Univ. Press, 1951. Zbl0942.55002MR39258
  28. [SN] H. Samelson : Notes on Lie algebras. Van Nostrand, New York1969. Zbl0708.17005MR254112
  29. [SP] T. Springer : The projective Octave plane. Indag. Math.22, 74-100 (1960) Zbl0131.36901MR126196
  30. [TS] J. Tits : 1. Le plan projectif des octaves et les groupes de Lie exceptionnels. Bull. Acad. Roy.Belgique39, 309-329 (1953). Zbl0050.25803MR54608
  31. [TS] J. Tits : 2. Le plan projectif des octaves et les groupes exceptionnels E6 et E7. Bull. Acad. Roy.Belgique40, 29-40 (1954). Zbl0055.13903MR62749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.