Various structures in 8-dimensional vector bundles over 8-manifolds

Martin Čadek; Jiří Vanžura

Banach Center Publications (1998)

  • Volume: 45, Issue: 1, page 183-197
  • ISSN: 0137-6934

Abstract

top
The paper is an overview of our results concerning the existence of various structures, especially complex and quaternionic, in 8-dimensional vector bundles over closed connected smooth 8-manifolds.

How to cite

top

Čadek, Martin, and Vanžura, Jiří. "Various structures in 8-dimensional vector bundles over 8-manifolds." Banach Center Publications 45.1 (1998): 183-197. <http://eudml.org/doc/208903>.

@article{Čadek1998,
abstract = {The paper is an overview of our results concerning the existence of various structures, especially complex and quaternionic, in 8-dimensional vector bundles over closed connected smooth 8-manifolds.},
author = {Čadek, Martin, Vanžura, Jiří},
journal = {Banach Center Publications},
keywords = {obstructions; Cayley numbers; principle of triality; vector bundle; characteristic classes; classifying spaces; reduction of the structure group},
language = {eng},
number = {1},
pages = {183-197},
title = {Various structures in 8-dimensional vector bundles over 8-manifolds},
url = {http://eudml.org/doc/208903},
volume = {45},
year = {1998},
}

TY - JOUR
AU - Čadek, Martin
AU - Vanžura, Jiří
TI - Various structures in 8-dimensional vector bundles over 8-manifolds
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 183
EP - 197
AB - The paper is an overview of our results concerning the existence of various structures, especially complex and quaternionic, in 8-dimensional vector bundles over closed connected smooth 8-manifolds.
LA - eng
KW - obstructions; Cayley numbers; principle of triality; vector bundle; characteristic classes; classifying spaces; reduction of the structure group
UR - http://eudml.org/doc/208903
ER -

References

top
  1. [AD] M. Atiyah and J. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1-40. Zbl0233.57010
  2. [BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538. Zbl0097.36401
  3. [Br] C. Brada, Eléments de la géométrie des octaves de Cayley, Thesis, Publications du Département de Mathématiques de l'Université de Lyon I, 2/d-1986. Zbl0635.17012
  4. [CV1] M. Čadek and J. Vanžura, On the classification of oriented vector bundles over 9-complexes, Proceedings of the Winter School Geometry and Physics 1993, Suppl. Rend. Circ. Math. Palermo, Serie II 37 (1994). Zbl0883.55014
  5. [CV2] M. Čadek and J. Vanžura, On 2-distributions in 8-dimensional vector bundles over 8-complexes, Colloq. Math. 70 (1996), 25-40. Zbl0844.57026
  6. [CV3] M. Čadek and J. Vanžura, On Sp(2) and Sp(2)·Sp(1)-structures in 8-dimensional vector bundles, to appear in Publ. Math. Zbl0896.57015
  7. [CV4] M. Čadek and J. Vanžura, Almost quaternionic structures on eight-manifolds, to appear in Osaka J. Math. 35 (1) (1998). Zbl0902.57027
  8. [CV5] M. Čadek and J. Vanžura, On complex structures in 8-dimensional vector bundles, to appear in Manuscripta Math. Zbl0902.57029
  9. [CV6] M. Čadek and J. Vanžura, On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes, Colloq. Math. 76 (1998), 213-228. Zbl0894.57021
  10. [CS] M. C. Crabb and B. Steer, Vector-bundle monomorphisms with finite singularities, Proc. London Math. Soc. (3) 30 (1975), 1-39. Zbl0294.57015
  11. [Du] J. L. Dupont, K-theory obstructions to the existence of vector fields, Acta Math. 113 (1974), 67-80. Zbl0313.57012
  12. [E] C. Ehresmann, Sur les variétés presque complexes, Proceedings of the International Congress of Mathematicians II(1950), 412-419. 
  13. [Fr] H. Freudenthal, Octaven Ausnahmegruppen und Oktavengeometrie, Utrecht, 1951. 
  14. [GG] A. Gray and P. Green, Sphere transitive structures and the triality automorphism, Pacific J. Math. 34 (1970), 83-96. Zbl0194.22804
  15. [He] T. Heaps, Almost complex structures on eight- and ten-dimensional manifolds, Topology 9 (1970), 111-119. Zbl0189.54506
  16. [Hi] F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. International Congress of Mathematicians 1958, Cambridge University Press, 1960, 119-136. 
  17. [HH] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172. Zbl0088.39403
  18. [K1] U. Koschorke, Vector fields and other vector bundle morphisms - a singularity approach, Lecture Notes in Mathematics 847, Springer-Verlag, 1981. Zbl0459.57016
  19. [K2] U. Koschorke, Nonstable and stable monomorphisms of vector bundles, preprint (1995). 
  20. [Po] M. M. Postnikov, Lie Groups and Lie Algebras, Lectures in Geometry, Semester V, translation from Russian, Mir, Moscow, 1986. 
  21. [Q] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212. Zbl0225.55015
  22. [T1] E. Thomas, Complex structures on real vector bundles, Am. J. Math. 89 (1966), 887-908. Zbl0174.54802
  23. [T2] E. Thomas, Vector fields on manifolds, Bulletin Amer. Math. Soc. 75 (1967), 643-683. 
  24. [T3] E. Thomas, On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc. Math. Mex. (2) 7 (1962), 57-69. Zbl0124.16401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.